リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cytosine base editing systems with minimized off-target effect and molecular size」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cytosine base editing systems with minimized off-target effect and molecular size

Li, Ang Mitsunobu, Hitoshi Yoshioka, Shin Suzuki, Takahisa Kondo, Akihiko Nishida, Keiji 神戸大学

2022.08.08

概要

Cytosine base editing enables the installation of specific point mutations without double-strand breaks in DNA and is advantageous for various applications such as gene therapy, but further reduction of off-target risk and development of efficient delivery methods are desired. Here we show structure-based rational engineering of the cytosine base editing system Target-AID to minimize its off-target effect and molecular size. By intensive and careful truncation, DNA-binding domain of its deaminase PmCDA1 is eliminated and additional mutations are introduced to restore enzyme function. The resulting tCDA1EQ is effective in N-terminal fusion (AID-2S) or inlaid architecture (AID-3S) with Cas9, showing minimized RNA-mediated editing and gRNA-dependent/independent DNA off-targets, as assessed in human cells. Combining with the smaller Cas9 ortholog system (SaCas9), a cytosine base editing system is created that is within the size limit of AAV vector.

この論文で使われている画像

参考文献

1. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A.& Liu, D. R. Pro- grammable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

2. Nishida, K., et al. Targeted nucleotide editing using hybrid prokar- yotic and vertebrate adaptive immune systems. Science (80-.). 353, (2016).

3. Jin, S. et al. Cytosine, but not adenine, base editors induce genome- wide off-target mutations in rice. Science (80-.). 364, (2019).

4. McGrath, E. et al. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nat. Commun. 10, 5353 (2019).

5. Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, (2019).

6. Park, S. & Beal, P. A. Off-target editing by CRISPR-guided DNA base editors. Biochemistry 58, 3727–3734 (2019).

7. Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cyto- sine base editors. Nat. Biotechnol. 38, 620–628 (2020).

8. Yu, Y. et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nat. Com- mun. 11, (2020).

9. Wang, Y., Zhou, L., Liu, N. & Yao, S. BE-PIGS: A base-editing tool with deaminases inlaid into cas9 pi domain significantly expanded the editing scope. Signal Transduct. Target. Ther. 4, 36 (2019).

10. Nguyen Tran, M. T. et al. Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing. Nat. Commun. 11, 4871 (2020).

11. Chu, S. H. et al. Rationally designed base editors for precise editing of the sickle cell disease mutation. Cris. J. 4, 169–177 (2021).

12. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science (80-.). 364, (2019).

13. Banno, S., Nishida, K., Arazoe, T., Mitsunobu, H. & Kondo, A. Deaminase-mediated multiplex genome editing in Escherichia coli. Nat. Microbiol. 3, 423–429 (2018).

14. Wang, D., Tai, P. W. L.& Gao, G. Adeno-associated virus vector asa platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

15. Nishimasu, H. et al. Crystal structure of Staphylococcus aureus Cas9. Cell 162, 1113–1126 (2015).

16. Kumar, N., et al. The development of an AAV-based crispr sacas9 genome editing system that can be delivered to neurons in vivo and regulated via doxycycline and cre-recombinase. Front. Mol. Neurosci. 11, (2018).

17. Chen, Y. et al. Development of highly efficient dual-AAV split ade- nosine base editor for in vivo gene therapy. Small Methods 4, 2000309 (2020).

18. Qiao, Q. et al. AID recognizes structured DNA for class switch recombination. Mol. Cell 67, 361–373 (2017).

19. Tan, J., Zhang, F., Karcher, D. & Bock, R. Expanding the genome- targeting scope and the site selectivity of high-precision base editors. Nat. Commun. 11, 629 (2020).

20. Grünewald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, (2019).

21. Zhao, T. et al. Small-molecule compounds boost genome-editing efficiency of cytosine base editor. Nucleic Acids Res. 49, 8974–8986 (2021).

22. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off- target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

23. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

24. Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno- associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

25. Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

26. Kim, Y. B. et al. Increasing the genome-targeting scope and pre- cision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

27. Zuo, E. et al. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat. Methods 17, 600–604 (2020).

28. Lada, A. G. et al. Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase. PLoS Genet. 9, e1003736 (2013).

29. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

30. Dicarlo, J. E. et al. Genome engineering in Saccharomyces cere- visiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).

31. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

32. Juven-Gershon, T., Cheng, S. & Kadonaga, J. T. Rational design of a super core promoter that enhances gene expression. Nat. Methods.a 3, 917–922 (2006).

33. Lima, S. A. et al. Short poly(A) tails are a conserved feature of highly expressed genes. Nat. Struct. Mol. Biol. 24, 1057–1063 (2017).

34. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

35. Clement, K. et al. CRISPResso2 provides accurate and rapid gen- ome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る