リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Current Overview of Osteogenesis Imperfecta.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Current Overview of Osteogenesis Imperfecta.

DEGUCHI Mari 80866674 TSUJI Shunichiro 30601546 0000-0003-3945-6817 KATSURA Daisuke 0000-0002-5357-5700 KASAHARA Kyoko 00781501 KIMURA Fuminori 90322148 0000-0002-9840-4227 MURAKAMI Takashi 20240666 0000-0002-0250-0856 滋賀医科大学

2021.05.10

概要

Osteogenesis imperfecta (OI), or brittle bone disease, is a heterogeneous disorder characterised by bone fragility, multiple fractures, bone deformity, and short stature. OI is a heterogeneous disorder primarily caused by mutations in the genes involved in the production of type 1 collagen. Severe OI is perinatally lethal, while mild OI can sometimes not be recognised until adulthood. Severe or lethal OI can usually be diagnosed using antenatal ultrasound and confirmed by various imaging modalities and genetic testing. The combination of imaging parameters obtained by ultrasound, computed tomography (CT), and magnetic resource imaging (MRI) can not only detect OI accurately but also predict lethality before birth. Moreover, genetic testing, either noninvasive or invasive, can further confirm the diagnosis prenatally. Early and precise diagnoses provide parents with more time to decide on reproductive options. The currently available postnatal treatments for OI are not curative, and individuals with severe OI suffer multiple fractures and bone deformities throughout their lives. In utero mesenchymal stem cell transplantation has been drawing attention as a promising therapy for severe OI, and a clinical trial to assess the safety and efficacy of cell therapy is currently ongoing. In the future, early diagnosis followed by in utero stem cell transplantation should be adopted as a new therapeutic option for severe OI.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bregou, B.; Aubry-Rozier, B.; Bonafé, L.; Laurent-Applegate, L.; Pioletti, D.; Zambelli, P. Osteogenesis imperfecta: From diagnosis

and multidisciplinary treatment to future perspectives. Swiss Med. Wkly. 2016, 146, w14322. [CrossRef]

Forlino, A.; Marini, J.C. Osteogenesis imperfecta. Lancet 2016, 387, 1657–1671. [CrossRef]

Götherström, C.; Westgren, M.; Shaw, S.S.; Åström, E.; Biswas, A.; Byers, P.H.; Mattar, C.N.; Graham, G.E.; Taslimi, J.;

Ewald, U.; et al. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: A two-center

experience. Stem Cells Transl. Med. 2013, 3, 255–264. [CrossRef]

Forlino, A.; Cabral, W.A.; Barnes, A.M.; Marini, J.C. New perspectives on osteogenesis imperfecta. Nat. Rev. Endocrinol. 2011, 7,

540–557. [CrossRef]

Marini, J.C.; Forlino, A.; Cabral, W.A.; Barnes, A.M.; Antonio, J.D.S.; Milgrom, S.; Hyland, J.C.; Körkkö, J.; Prockop, D.J.;

De Paepe, A.; et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: Regions rich in

lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum. Mutat. 2007, 28, 209–221. [CrossRef]

Viguet-Carrin, S.; Garnero, P.; Delmas, P.D. The role of collagen in bone strength. Osteoporos. Int. 2005, 17, 319–336. [CrossRef]

Rauch, F.; Lalic, L.; Roughley, P.; Glorieux, F.H. Relationship Between Genotype and Skeletal Phenotype in Children and

Adolescents with Osteogenesis Imperfecta. J. Bone Miner. Res. 2009, 25, 1367–1374. [CrossRef] [PubMed]

Willing, M.C.; Deschenes, S.P.; Slayton, R.L.; Roberts, E.J. Premature Chain Termination Is a Unifying Mechanism for COL1Al

Null Alleles in Osteogenesis Imperfecta Type I Cell Strains. Am. J. Hum. Genet. 1996, 59, 799–809. [PubMed]

Hoyer-Kuhn, H.; Semler, O.; Schoenau, E. Effect of Denosumab on the Growing Skeleton in Osteogenesis Imperfecta. J. Clin.

Endocrinol. Metab. 2014, 99, 3954–3955. [CrossRef] [PubMed]

Marom, R.; Lee, Y.C.; Grafe, I.; Lee, B. Pharmacological and biological therapeutic strategies for osteogenesis imperfecta. Am. J.

Med Genet. Part C Semin. Med Genet. 2016, 172, 367–383. [CrossRef]

Krakow, D. Skeletal Dysplasias. Clin. Perinatol. 2015, 42, 301–319. [CrossRef]

Sillence, O.D.; Senn, A.; Danks, D.M. Genetic heterogeneity in osteogenesis imperfecta. J. Med Genet. 1979, 16, 101–116. [CrossRef]

[PubMed]

Barnes, A.M.; Chang, W.; Morello, R.; Cabral, W.A.; Weis, M.; Eyre, D.R.; Leikin, S.; Makareeva, E.; Kuznetsova, N.;

Uveges, T.E.; et al. Deficiency of Cartilage-Associated Protein in Recessive Lethal Osteogenesis Imperfecta. N. Engl. J. Med. 2006,

355, 2757–2764. [CrossRef] [PubMed]

Van Dijk, F.; Sillence, D. Osteogenesis imperfecta: Clinical diagnosis, nomenclature and severity assessment. Am. J. Med Genet.

Part A 2014, 164, 1470–1481. [CrossRef] [PubMed]

Marom, R.; Rabenhorst, B.M.; Morello, R. Management of endocrine disease: Osteogenesis imperfecta: An update on clinical

features and therapies. Eur. J. Endocrinol. 2020, 183, R95–R106. [CrossRef]

Byers, P.H.; Krakow, D.; Nunes, M.E.; Pepin, M. Genetic evaluation of suspected osteogenesis imperfecta (OI). Genet. Med. 2006, 8,

383–388. [CrossRef] [PubMed]

Milks, K.S.; Hill, L.M.; Hosseinzadeh, K. Evaluating skeletal dysplasias on prenatal ultrasound: An emphasis on predicting

lethality. Pediatr. Radiol. 2016, 47, 134–145. [CrossRef]

Krakow, D.; Lachman, R.S.; Rimoin, D.L. Guidelines for the prenatal diagnosis of fetal skeletal dysplasias. Genet. Med. 2009, 11,

127–133. [CrossRef]

Medicina 2021, 57, 464

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

12 of 15

Eames, B.F.; De La Fuente, L.; Helms, J.A. Molecular ontogeny of the skeleton. Birth Defects Res. Part C Embryo Today Rev. 2003, 69,

93–101. [CrossRef]

Olsen, B.R.; Reginato, A.M.; Wang, W. Bone Development. Annu. Rev. Cell Dev. Biol. 2000, 16, 191–220. [CrossRef]

Goncalves, L.; Jeanty, P. Fetal biometry of skeletal dysplasias: A multicentric study. J. Ultrasound Med. 1994, 13, 977–985.

[CrossRef] [PubMed]

Dighe, M.; Fligner, C.; Cheng, E.; Warren, B.; Dubinsky, T. Fetal Skeletal Dysplasia: An Approach to Diagnosis with Illustrative

Cases. RadioGraphics 2008, 28, 1061–1077. [CrossRef]

Blum, L.; Kurtz, A.B. Gestational age: What to measure and when. Semin. Roentgenol. 1990, 25, 299–308. [CrossRef]

Kurtz, A.B.; Needleman, L.; Wapner, R.J.; Hilpert, P.; Kuhlman, K.; Burns, P.N.; Feld, R.I.; Mitchell, D.G.; Segal, S.; Blum, L.

Usefulness of a short femur in the in utero detection of skeletal dysplasias. Radiology 1990, 177, 197–200. [CrossRef]

Morales-Roselló, J.; Llorens, N.P. Outcome of Fetuses with Diagnosis of Isolated Short Femur in the Second Half of Pregnancy.

ISRN Obstet. Gynecol. 2012, 2012, 1–5. [CrossRef]

Mortier, G.R.; Cohn, D.H.; Cormier-Daire, V.; Hall, C.; Krakow, D.; Mundlos, S.; Nishimura, G.; Robertson, S.; Sangiorgi, L.;

Savarirayan, R.; et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am. J. Med Genet. Part A 2019, 179,

2393–2419. [CrossRef] [PubMed]

Chitty, L.S.; Khalil, A.; Barrett, A.N.; Pajkrt, E.; Griffin, D.R.; Cole, T.J. Safe, accurate, prenatal diagnosis of thanatophoric dysplasia

using ultrasound and free fetal DNA. Prenat. Diagn. 2013, 33, 416–423. [CrossRef] [PubMed]

Vanegas, S.; Sua, L.F.; Lopez-Tenorio, J.; Ramírez-Montaño, D.; Pachajoa, H.M. Achondrogenesis type 1A: Clinical, histologic,

molecular, and prenatal ultrasound diagnosis. Appl. Clin. Genet. 2018, ume 11, 69–73. [CrossRef]

Schramm, T.; Gloning, K.P.; Minderer, S.; Daumer-Haas, C.; Hörtnagel, K.; Nerlich, A.; Tutschek, B. Prenatal sonographic

diagnosis of skeletal dysplasias. Ultrasound Obstet. Gynecol. 2009, 34, 160–170. [CrossRef]

Kimura, I.; Araki, R.; Yoshizato, T.; Miyamoto, S. A case of fetal osteogenesis imperfecta type 2A: Longitudinal observation of

natural course in utero and pitfalls for prenatal ultrasound diagnosis. J. Med. Ultrason. 2015, 42, 565–570. [CrossRef]

Muñoz, C.; Filly, R.A.; Golbus, M.S. Osteogenesis imperfecta type II: Prenatal sonographic diagnosis. Radiology 1990, 174, 181–185.

[CrossRef]

Bulas, I.D.; Stern, H.J.; Rosenbaum, K.N.; Fonda, J.A.; Glass, R.B.; Tifft, C. Variable prenatal appearance of osteogenesis imperfecta.

J. Ultrasound Med. 1994, 13, 419–427. [CrossRef] [PubMed]

Merz, E.; Miric-Tesanic, D.; Bahlmann, F.; Weber, G.; Hallermann, C. Prenatal sonographic chest and lung measurements for

predicting severe pulmonary hypoplasia. Prenat. Diagn. 1999, 19, 614–619. [CrossRef]

Chitkara, U.; Rosenberg, J.; Chervenak, F.A.; Berkowitz, G.S.; Levine, R.; Fagerstrom, R.M.; Walker, B.; Berkowitz, R.L. Prenatal

sonographic assessment of the fetal thorax: Normal values. Am. J. Obstet. Gynecol. 1987, 156, 1069–1074. [CrossRef]

Yoshimura, S.; Masuzaki, H.; Gotoh, H.; Fukuda, H.; Ishimaru, T. Ultrasonographic prediction of lethal pulmonary hypoplasia:

Comparison of eight different ultrasonographic parameters. Am. J. Obstet. Gynecol. 1996, 175, 477–483. [CrossRef]

Peralta, C.F.A.; Cavoretto, P.; Csapo, B.; Falcon, O.; Nicolaides, K.H. Lung and heart volumes by three-dimensional ultrasound in

normal fetuses at 12–32 weeks’ gestation. Ultrasound Obstet. Gynecol. 2006, 27, 128–133. [CrossRef]

Rahemtullah, A.; McGillivray, B.; Wilson, R. Suspected skeletal dysplasias: Femur length to abdominal circumference ratio can be

used in ultrasonographic prediction of fetal outcome. Am. J. Obstet. Gynecol. 1997, 177, 864–869. [CrossRef]

Barros, C.A.; Rezende, G.D.C.; Júnior, E.A.; Tonni, G.; Pereira, A.K. Prediction of lethal pulmonary hypoplasia by means fetal lung

volume in skeletal dysplasias: A three-dimensional ultrasound assessment. J. Matern. Neonatal Med. 2015, 29, 1–6. [CrossRef]

Ramus, R.M.; Martin, L.B.; Twickler, D.M. Ultrasonographic prediction of fetal outcome in suspected skeletal dysplasias with use

of the femur length-to-abdominal circumference ratio. Am. J. Obstet. Gynecol. 1998, 179, 1348–1352. [CrossRef]

Nelson, D.B.; Dashe, J.S.; McIntire, D.D.; Twickler, D.M. Fetal Skeletal Dysplasias. J. Ultrasound Med. 2014, 33, 1085–1090.

[CrossRef] [PubMed]

Kastenholz, K.E.; Weis, M.; Hagelstein, C.; Weiss, C.; Kehl, S.; Schaible, T.; Neff, K.W. Correlation of Observed-to-Expected MRI

Fetal Lung Volume and Ultrasound Lung-to-Head Ratio at Different Gestational Times in Fetuses with Congenital Diaphragmatic

Hernia. Am. J. Roentgenol. 2016, 206, 856–866. [CrossRef]

Gorincour, G.; Bouvenot, J.; Mourot, M.; Sonigo, P.; Chaumoître, K.; Garel, C.; Guibaud, L.; Rypens, F.; Avni, F.; Cassart, M.; et al.

Prenatal prognosis of congenital diaphragmatic hernia using magnetic resonance imaging measurement of fetal lung volume.

Ultrasound Obstet. Gynecol. 2005, 26, 738–744. [CrossRef]

Weaver, K.N.; Johnson, J.; Kline-Fath, B.; Zhang, X.; Lim, F.-Y.; Tinkle, B.; Saal, H.M.; Hopkin, R.J. Predictive value of fetal lung

volume in prenatally diagnosed skeletal dysplasia. Prenat. Diagn. 2014, 34, 1326–1331. [CrossRef]

Gilligan, L.A.; Calvo-Garcia, M.A.; Weaver, K.N.; Kline-Fath, B.M. Fetal magnetic resonance imaging of skeletal dysplasias.

Pediatr. Radiol. 2019, 50, 224–233. [CrossRef]

Krakow, D.; Williams, J.; Poehl, M.; Rimoin, D.L.; Platt, L.D. Use of three-dimensional ultrasound imaging in the diagnosis of

prenatal-onset skeletal dysplasias. Ultrasound Obstet. Gynecol. 2003, 21, 467–472. [CrossRef]

Ruano, R.; Molho, M.; Roume, J.; Ville, Y. Prenatal diagnosis of fetal skeletal dysplasias by combining two-dimensional and

three-dimensional ultrasound and intrauterine three-dimensional helical computer tomography. Ultrasound Obstet. Gynecol. 2004,

24, 134–140. [CrossRef]

Medicina 2021, 57, 464

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

13 of 15

Suzumori, N.; Hasegawa, T.; Sugiura-Ogasawara, M. Prenatal diagnosis of osteogenesis imperfecta type II by three-dimensional

ultrasound and computed tomography. J. Obstet. Gynaecol. Res. 2011, 37, 664–665. [CrossRef] [PubMed]

Waratani, M.; Ito, F.; Tanaka, Y.; Mabuchi, A.; Mori, T.; Kitawaki, J. Prenatal diagnosis of fetal skeletal dysplasia using 3dimensional computed tomography: A prospective study. BMC Musculoskelet. Disord. 2020, 21, 1–8. [CrossRef] [PubMed]

Wrixon, A.D. New ICRP recommendations. J. Radiol. Prot. 2008, 28, 161–168. [CrossRef] [PubMed]

Teng, S.-W.; Guo, W.-Y.; Sheu, M.-H.; Wang, P.H. Initial experience using magnetic resonance imaging in prenatal diagnosis of

osteogenesis imperfecta type II. Clin. Imaging 2003, 27, 55–58. [CrossRef]

Solopova, A.; Wisser, J.; Huisman, T.A. Osteogenesis Imperfecta Type II: Fetal Magnetic Resonance Imaging Findings. Fetal Diagn.

Ther. 2008, 24, 361–367. [CrossRef]

Berceanu, C.; Gheonea, I.A.; Cîrstoiu, M.M.; Vlădăreanu, R.; Berceanu, S.; Ciortea, R.; Brătilă, E.; Vlădăreanu, S.; Mehedint, u, C.

Ultrasound and MRI comprehensive approach in prenatal diagnosis of fetal osteochondrodysplasias. Cases series. Med. Ultrason.

2017, 19, 66–72. [CrossRef]

Zhytnik, L.; Simm, K.; Salumets, A.; Peters, M.; Märtson, A.; Maasalu, K. Reproductive options for families at risk of Osteogenesis

Imperfecta: A review. Orphanet J. Rare Dis. 2020, 15, 1–20. [CrossRef]

Bernabé-Ortiz, A.; White, P.J.; Carcamo, C.P.; Hughes, J.P.; Gonzales, M.A.; Garcia, P.J.; Garnett, G.P.; Holmes, K.K. Clandestine

induced abortion: Prevalence, incidence and risk factors among women in a Latin American country. Can. Med. Assoc. J. 2009,

180, 298–304. [CrossRef]

Skotko, B.G.; Levine, S.P.; Goldstein, R. Having a son or daughter with Down syndrome: Perspectives from mothers and fathers.

Am. J. Med. Genet. Part A 2011, 155, 2335–2347. [CrossRef]

Sagi, M.; Meiner, V.; Reshef, N.; Dagan, J.; Zlotogora, J. Prenatal diagnosis of sex chromosome aneuploidy: Possible reasons for

high rates of pregnancy termination. Prenat. Diagn. 2001, 21, 461–465. [CrossRef]

Moudi, Z.; Phanodi, Z.; Ansari, H.; Zohour, M.M. Decisional conflict and regret: Shared decision-making about pregnancy

affected by β-thalassemia major in Southeast of Iran. J. Hum. Genet. 2017, 63, 309–317. [CrossRef]

Lo, Y.M.D.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.; Wainscoat, J.S. Presence of fetal DNA in maternal

plasma and serum. Lancet 1997, 350, 485–487. [CrossRef]

Dhallan, R.; Guo, X.; Emche, S.; Damewood, M.; Bayliss, P.; Cronin, M.; Barry, J.; Betz, J.; Franz, K.; Gold, K.; et al. A non-invasive

test for prenatal diagnosis based on fetal DNA present in maternal blood: A preliminary study. Lancet 2007, 369, 474–481.

[CrossRef]

Wang, E.; Batey, A.; Struble, C.; Musci, T.; Song, K.; Oliphant, A. Gestational age and maternal weight effects on fetal cell-free

DNA in maternal plasma. Prenat. Diagn. 2013, 33, 662–666. [CrossRef]

Hui, L.; Vaughan, J.I.; Nelson, M. Effect of labor on postpartum clearance of cell-free fetal DNA from the maternal circulation.

Prenat. Diagn. 2008, 28, 304–308. [CrossRef]

D’Aversa, E.; Breveglieri, G.; Pellegatti, P.; Guerra, G.; Gambari, R.; Borgatti, M. Non-invasive fetal sex diagnosis in plasma of

early weeks pregnants using droplet digital PCR. Mol. Med. 2018, 24, 1–8. [CrossRef]

Beaudet, A.L. Using fetal cells for prenatal diagnosis: History and recent progress. Am. J. Med. Genet. Part C Semin. Med. Genet.

2016, 172, 123–127. [CrossRef] [PubMed]

Lench, N.; Barrett, A.; Fielding, S.; McKay, F.; Hill, M.; Jenkins, L.; White, H.; Chitty, L.S. The clinical implementation of

non-invasive prenatal diagnosis for single-gene disorders: Challenges and progress made. Prenat. Diagn. 2013, 33, 555–562.

[CrossRef]

Shaw, J.; Scotchman, E.; Chandler, N.; Chitty, L.S. Preimplantation genetic testing: Non-invasive prenatal testing for aneuploidy,

copy-number variants and single-gene disorders. Reproduction 2020, 160, A1–A11. [CrossRef] [PubMed]

Chitty, L.S.; Mason, S.; Barrett, A.N.; McKay, F.; Lench, N.; Daley, R.; Jenkins, L.A. Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: Next-generation sequencing allows for a safer, more accurate, and comprehensive

approach. Prenat. Diagn. 2015, 35, 656–662. [CrossRef] [PubMed]

Zhang, J.; Li, J.; Saucier, J.B.; Feng, Y.; Jiang, Y.; Sinson, J.; McCombs, A.K.; Schmitt, E.S.; Peacock, S.; Chen, S.; et al. Non-invasive

prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat. Med. 2019, 25,

439–447. [CrossRef]

You, Y.; Sun, Y.; Li, X.; Li, Y.; Wei, X.; Chen, F.; Ge, H.; Lan, Z.; Zhu, Q.; Tang, Y.; et al. Integration of targeted sequencing and NIPT

into clinical practice in a Chinese family with maple syrup urine disease. Genet. Med. 2014, 16, 594–600. [CrossRef]

Dan, S.; Yuan, Y.; Wang, Y.; Chen, C.; Gao, C.; Yu, S.; Liu, Y.; Song, W.; Asan; Zhu, H.; et al. Non-Invasive Prenatal Diagnosis of

Lethal Skeletal Dysplasia by Targeted Capture Sequencing of Maternal Plasma. PLoS ONE 2016, 11, e0159355. [CrossRef]

Yin, X.; Du, Y.; Zhang, H.; Wang, Z.; Wang, J.; Fu, X.; Cui, Y.; Chen, C.; Liang, J.; Xuan, Z.; et al. Identification of a de novo fetal

variant in osteogenesis imperfecta by targeted sequencing-based noninvasive prenatal testing. J. Hum. Genet. 2018, 63, 1129–1137.

[CrossRef] [PubMed]

Malcher, C.; Yamamoto, G.L.; Burnham, P.; Ezquina, S.A.; Lourenço, N.C.; Balkassmi, S.; Antonio, D.S.M.; Hsia, G.S.; Gollop, T.;

Pavanello, R.C.; et al. Development of a comprehensive noninvasive prenatal test. Genet. Mol. Biol. 2018, 41, 545–554. [CrossRef]

Verhoef, T.I.; Hill, M.; Drury, S.; Mason, S.; Jenkins, L.; Morris, S.; Chitty, L.S. Non-invasive prenatal diagnosis (NIPD) for single

gene disorders: Cost analysis of NIPD and invasive testing pathways. Prenat. Diagn. 2016, 36, 636–642. [CrossRef]

Medicina 2021, 57, 464

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

14 of 15

Wieacker, P.; Steinhard, J. The Prenatal Diagnosis of Genetic Diseases. Dtsch. Aerzteblatt Online 2010, 107, 857–862. [CrossRef]

[PubMed]

Alfirevic, Z.; Navaratnam, K.; Mujezinovic, F. Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane

Database Syst. Rev. 2017, 9, 003252. [CrossRef]

Akolekar, R.; Beta, J.; Picciarelli, G.; Ogilvie, C.; D’Antonio, F. Procedure-related risk of miscarriage following amniocentesis and

chorionic villus sampling: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2015, 45, 16–26. [CrossRef]

Salomon, L.J.; Sotiriadis, A.; Wulff, C.B.; Odibo, A.; Akolekar, R. Risk of miscarriage following amniocentesis or chorionic villus

sampling: Systematic review of literature and updated meta-analysis. Ultrasound Obstet. Gynecol. 2019, 54, 442–451. [CrossRef]

[PubMed]

Mujezinovic, F.; Alfirevic, Z. Procedure-Related Complications of Amniocentesis and Chorionic Villous Sampling. Obstet. Gynecol.

2007, 110, 687–694. [CrossRef]

Kalousek, D.K.; Dill, F.J.; Pantzar, T.; McGillivray, B.C.; Yong, S.L.; Wilson, R.D. Confined chorionic mosaicism in prenatal

diagnosis. Qual. Life Res. 1987, 77, 163–167. [CrossRef] [PubMed]

Ledbetter, D.H.; Zachary, J.M.; Simpson, J.L.; Golbus, M.S.; Pergament, E.; Jackson, L.; Mahoney, M.J.; Desnick, R.J.; Schulman, J.;

Copeland, K.L.; et al. Cytogenetic results from the U.S. collaborative study on CVS. Prenat. Diagn. 1992, 12, 317–345. [CrossRef]

Goldberg, J.D.; Wohlferd, M.M. Incidence and outcome of chromosomal mosaicism found at the time of chorionic villus sampling.

Am. J. Obstet. Gynecol. 1997, 176, 1349–1353. [CrossRef]

Marlowe, A.; Pepin, M.G.; Byers, P.H. Testing for osteogenesis imperfecta in cases of suspected non-accidental injury. J. Med.

Genet. 2002, 39, 382–386. [CrossRef]

Norwitz, E.R.; Levy, B. Noninvasive Prenatal Testing: The Future Is Now. Rev. Obstet. Gynecol. 2013, 6, 48–62.

Sharma, A.; George, L.; Erskin, K. Osteogenesis Imperfecta in Pregnancy: Two Case Reports and Review of Literature. Obstet.

Gynecol. Surv. 2001, 56, 563–566. [CrossRef] [PubMed]

Cubert, R.; Cheng, E.Y.; Mack, S.; Pepin, M.G.; Byers, P.H. Osteogenesis imperfecta: Mode of delivery and neonatal outcome.

Obstet. Gynecol. 2001, 97, 66–69. [CrossRef] [PubMed]

Bellur, S.; Jain, M.; Cuthbertson, D.; Krakow, D.; Shapiro, J.R.; Steiner, R.D.; Smith, P.A.; Bober, M.B.; Hart, T.; Members of the BBD

Consortium; et al. Cesarean delivery is not associated with decreased at-birth fracture rates in osteogenesis imperfecta. Genet.

Med. 2015, 18, 570–576. [CrossRef]

Messineo, D.; Luzzi, V.; Pepe, F.; Celli, L.; Turchetti, A.; Zambrano, A.; Celli, M.; Polimeni, A.; Ierardo, G. New 3D Cone Beam CT

Imaging Parameters to Assist the Dentist in Treating Patients with Osteogenesis Imperfecta. Healthcare 2020, 8, 546. [CrossRef]

[PubMed]

Glorieux, F.H. Osteogenesis imperfecta. Best Pr. Res. Clin. Rheumatol. 2008, 22, 85–100. [CrossRef] [PubMed]

Letocha, A.D.; Cintas, H.L.; Troendle, J.F.; Reynolds, J.C.; Cann, E.C.; Chernoff, E.J.; Hill, S.C.; Gerber, L.H.; Marini, J.C. Controlled

Trial of Pamidronate in Children with Types III and IV Osteogenesis Imperfecta Confirms Vertebral Gains but Not Short-Term

Functional Improvement. J. Bone Miner. Res. 2005, 20, 977–986. [CrossRef]

Ward, L.M.; Rauch, F.; Whyte, M.P.; D’Astous, J.; Gates, P.E.; Grogan, D.; Lester, E.L.; McCall, R.E.; Pressly, T.A.; Sanders, J.O.; et al.

Alendronate for the Treatment of Pediatric Osteogenesis Imperfecta: A Randomized Placebo-Controlled Study. J. Clin. Endocrinol.

Metab. 2011, 96, 355–364. [CrossRef] [PubMed]

Hald, J.D.; Evangelou, E.; Langdahl, B.L.; Ralston, S.H. Bisphosphonates for the Prevention of Fractures in Osteogenesis

Imperfecta: Meta-Analysis of Placebo-Controlled Trials. J. Bone Miner. Res. 2015, 30, 929–933. [CrossRef]

Gatti, D.; Rossini, M.; Viapiana, O.; Povino, M.R.; Liuzza, S.; Fracassi, E.; Idolazzi, L.; Adami, S. Teriparatide Treatment in Adult

Patients with Osteogenesis Imperfecta Type I. Calcif. Tissue Int. 2013, 93, 448–452. [CrossRef]

Orwoll, E.S.; Shapiro, J.; Veith, S.; Wang, Y.; Lapidus, J.; Vanek, C.; Reeder, J.L.; Keaveny, T.M.; Lee, D.C.; Mullins, M.A.; et al.

Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J. Clin. Investig. 2014, 124, 491–498. [CrossRef]

[PubMed]

Hoyer-Kuhn, H.; Netzer, C.; Koerber, F.; Schoenau, E.; Semler, O. Two years’ experience with denosumab for children with

Osteogenesis imperfecta type VI. Orphanet J. Rare Dis. 2014, 9, 1–8. [CrossRef]

Grafe, I.; Yang, T.; Alexander, S.; Homan, E.P.; Lietman, C.; Jiang, M.M.; Bertin, T.K.; Munivez, E.; Chen, Y.; Dawson, B.; et al.

Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat. Med. 2014, 20,

670–675. [CrossRef]

Wang, Q.; Forlino, A.; Marini, J.C. Alternative Splicing in COL1A1 mRNA Leads to a Partial Null Allele and Two In-frame Forms

with Structural Defects in Non-lethal Osteogenesis Imperfecta. J. Biol. Chem. 1996, 271, 28617–28623. [CrossRef]

Niyibizi, C.; Wang, S.; Mi, Z.; Robbins, P.D. Gene therapy approaches for osteogenesis imperfecta. Gene Ther. 2004, 11, 408–416.

[CrossRef] [PubMed]

Sagar, R.; Walther-Jallow, L.; David, A.L.; Götherström, C.; Westgren, M. Fetal Mesenchymal Stromal Cells: An Opportunity for

Prenatal Cellular Therapy. Curr. Stem Cell Rep. 2018, 4, 61–68. [CrossRef]

Niyibizi, C.; Li, F. Potential implications of cell therapy for osteogenesis imperfecta. Int. J. Clin. Rheumatol. 2009, 4, 57–66.

[CrossRef]

Medicina 2021, 57, 464

15 of 15

Götherström, C.; Walther-Jallow, L. Stem Cell Therapy as a Treatment for Osteogenesis Imperfecta. Curr. Osteoporos. Rep. 2020, 18,

337–343. [CrossRef] [PubMed]

100. Hill, M.; Lewis, C.; Riddington, M.; Crowe, B.; Devile, C.; David, A.L.; Semler, O.; Westgren, M.; Götherström, C.; Chitty, L.S.

Stakeholder views and attitudes towards prenatal and postnatal transplantation of fetal mesenchymal stem cells to treat

Osteogenesis Imperfecta. Eur. J. Hum. Genet. 2019, 27, 1244–1253. [CrossRef]

101. Allyse, M.; Minear, M.A.; Rote, M.; Hung, A.; Chandrasekharan, S.; Berson, E.; Sridhar, S. Non-invasive prenatal testing: A review

of international implementation and challenges. Int. J. Women’s Health 2015, 7, 113–126. [CrossRef] [PubMed]

99.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る