リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Circulatory C-type natriuretic peptide reduces mucopolysaccharidosis-associated craniofacial hypoplasia in vivo」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Circulatory C-type natriuretic peptide reduces mucopolysaccharidosis-associated craniofacial hypoplasia in vivo

Kashiwagi, Marina 京都大学 DOI:10.14989/doctor.k24787

2023.05.23

概要

Mucopolysaccharidosis (MPS) is an umbrella term for a group of progressive diseases caused
by the impaired activity of specific lysosomal enzymes required for glycosaminoglycan degradation, and is clinically characterised by deafness, joint stiffness, obstructive airway disease,
valvular disease, mental retardation and other manifestations [1, 2].
The estimated overall incidence of MPS is higher than 1:25,000 live births [3], and the life
expectancy is dependent on the severity of the disease, but MPS patients may survive up to
their 50s or 60s [4].
Craniofacial morphology is distinguished by a flat face, a depressed nasal bridge [5] and
foramen magnum stenosis, which can lead to neurological symptoms [6, 7]. MPS is primarily
treated with haematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT) [8].
In HSCT, patients under the age of 24 months show significantly better development, and
the donor is preferred to be a human leukocyte antigen (HLA) identical sibling [9]. GAGmediated damage might be difficult to revert by ERT once it has occurred in the cranial bone
and spine [10]. The efficacy of gene therapy combined with the ex vivo lentiviral modification
of haematopoietic stem and progenitor cells in MPS I mice and humans has been reported,
and with this method, it is possible to achieve higher levels of enzyme expression. However,
this treatment strategy is associated with the risk of tumorigenesis as well as other conditions
[11]. C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, promotes
bone growth and exerts its biological actions through guanylyl cyclase-B (GC-B) [12].
We previously reported that the CNP/GC-B system is a potent stimulator of endochondral
bone growth and that CNP is a potent stimulator of the craniofacial region [13]. Based on
these findings, we hypothesised that the CNP/GC-B system represents a novel therapeutic target for craniofacial hypoplasia in MPS VII. In this study, we analysed the head and neck morphology of MPS type VII model mice and then the effects of CNP and its co-treatment with
ERT in these mice. ...

この論文で使われている画像

参考文献

1.

Muenzer J. Overview of the mucopolysaccharidoses. Rheumatology. 2011; 50(suppl_5):v4–v12.

https://doi.org/10.1093/rheumatology/ker394 PMID: 22210669

2.

Stapleton M, Arunkumar N, Kubaski F, Mason RW, Tadao O, Tomatsu S. Clinical presentation and

diagnosis of mucopolysaccharidoses. Molecular genetics and metabolism. 2018; 125(1–2):4–17.

https://doi.org/10.1016/j.ymgme.2018.01.003 PMID: 30057281

3.

Tomatsu S, Fujii T, Fukushi M, Oguma T, Shimada T, Maeda M, et al. Newborn screening and diagnosis of mucopolysaccharidoses. Molecular genetics and metabolism. 2013; 110(1–2):42–53. https://doi.

org/10.1016/j.ymgme.2013.06.007 PMID: 23860310

4.

Scarpa M, Alma´ssy Z, Beck M, Bodamer O, Bruce IA, De Meirleir L, et al. Mucopolysaccharidosis type

II: European recommendations for the diagnosis and multidisciplinary management of a rare disease.

Orphanet journal of rare diseases. 2011; 6(1):1–18. https://doi.org/10.1186/1750-1172-6-72 PMID:

22059643

5.

Elflein H, Hofherr T, Berisha-Ramadani F, Weyer V, Lampe C, Beck M, et al. Measuring corneal clouding in patients suffering from mucopolysaccharidosis with the Pentacam densitometry programme. British Journal of Ophthalmology. 2013; 97(7):829–33. https://doi.org/10.1136/bjophthalmol-2012-302913

PMID: 23685998

6.

Alden TD, Amartino H, Dalla Corte A, Lampe C, Harmatz PR, Vedolin L. Surgical management of neurological manifestations of mucopolysaccharidosis disorders. Molecular genetics and metabolism.

2017; 122:41–8. https://doi.org/10.1016/j.ymgme.2017.09.011 PMID: 29153846

7.

Vinchon M, Cotten A, Clarisse J, Chiki R, Christiaens J-L. Cervical myelopathy secondary to Hunter

syndrome in an adult. American journal of neuroradiology. 1995; 16(7):1402–3. PMID: 7484623

8.

Valayannopoulos V, Wijburg FA. Therapy for the mucopolysaccharidoses. Rheumatology. 2011; 50

(suppl_5):v49–v59. https://doi.org/10.1093/rheumatology/ker396 PMID: 22210671

9.

Martins AM, Dualibi AP, Norato D, Takata ET, Santos ES, Valadares ER, et al. Guidelines for the management of mucopolysaccharidosis type I. The Journal of pediatrics. 2009; 155(4):S32–S46. https://doi.

org/10.1016/j.jpeds.2009.07.005 PMID: 19765409

10.

Muenzer J. Early initiation of enzyme replacement therapy for the mucopolysaccharidoses. Molecular

genetics and metabolism. 2014; 111(2):63–72. https://doi.org/10.1016/j.ymgme.2013.11.015 PMID:

24388732

11.

Poletto E, Baldo G, Gomez-Ospina N. Genome editing for mucopolysaccharidoses. International journal of molecular sciences. 2020; 21(2):500. https://doi.org/10.3390/ijms21020500 PMID: 31941077

12.

Suga S, Nakao K, Hosoda K, Mukoyama M, Ogawa Y, Shirakami G, et al. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide.

Endocrinology. 1992; 130(1):229–39. https://doi.org/10.1210/endo.130.1.1309330 PMID: 1309330

13.

Nakao K, Yasoda A, Okubo Y, Yamanaka S, Koyama N, Osawa K, et al. A novel therapeutic strategy

for midfacial hypoplasia using the CNP/GC-B system. Journal of oral and maxillofacial surgery, medicine, and pathology. 2017; 29(1):10–6.

14.

Gwynn B, Lueders K, Sands MS, Birkenmeier EH. Intracisternal A-particle element transposition into

the murine β-glucuronidase gene correlates with loss of enzyme activity: a new model for β-glucuronidase deficiency in the C3H mouse. Molecular and cellular biology. 1998; 18(11):6474–81.

15.

Kake T, Kitamura H, Adachi Y, Yoshioka T, Watanabe T, Matsushita H, et al. Chronically elevated

plasma C-type natriuretic peptide level stimulates skeletal growth in transgenic mice. American Journal

of Physiology-Endocrinology and Metabolism. 2009; 297(6):E1339–E48. https://doi.org/10.1152/

ajpendo.00272.2009 PMID: 19808910

16.

Kanai Y, Yasoda A, Mori KP, Watanabe-Takano H, Nagai-Okatani C, Yamashita Y, et al. Circulating

osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance. The Journal of clinical

investigation. 2017; 127(11):4136–47. https://doi.org/10.1172/JCI94912 PMID: 28990933

17.

Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene therapy. 1999; 6(7):1258–66. https://doi.org/10.1038/sj.gt.3300947 PMID: 10455434

18.

Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene therapy. 2002; 9

(24):1647–52. https://doi.org/10.1038/sj.gt.3301923 PMID: 12457277

19.

Yamashita T, Fujii T, Yamauchi I, Ueda Y, Hirota K, Kanai Y, et al. C-type natriuretic peptide restores

growth impairment under enzyme replacement in mice with mucopolysaccharidosis VII. Endocrinology.

2020; 161(2). https://doi.org/10.1210/endocr/bqaa008 PMID: 31974587

20.

Nakao K, Okubo Y, Yasoda A, Koyama N, Osawa K, Isobe Y, et al. The effects of C-type natriuretic peptide on craniofacial skeletogenesis. Journal of dental research. 2013; 92(1):58–64. https://doi.org/10.

1177/0022034512466413 PMID: 23114031

PLOS ONE | https://doi.org/10.1371/journal.pone.0277140 November 10, 2022

12 / 13

PLOS ONE

Effects of CNP on the craniofacial region in MPS VII

21.

Yamanaka S, Nakao K, Koyama N, Isobe Y, Ueda Y, Kanai Y, et al. Circulatory CNP rescues craniofacial hypoplasia in achondroplasia. Journal of dental research. 2017; 96(13):1526–34. https://doi.org/10.

1177/0022034517716437 PMID: 28644737

22.

Lei WY, Wong RW, Rabie A. Factors regulating endochondral ossification in the spheno-occipital

synchondrosis. The Angle Orthodontist. 2008; 78(2):215–20. https://doi.org/10.2319/020707-59.1

PMID: 18251599

23.

Hall CW, Cantz M, Neufeld EF. A β-glucuronidase deficiency mucopolysaccharidosis: studies in cultured fibroblasts. Archives of biochemistry and biophysics. 1973; 155(1):32–8. https://doi.org/10.1016/

s0003-9861(73)80006-2 PMID: 4268215

24.

Vogler C, Levy B, Galvin N, Sands MS, Birkenmeier EH, Sly WS, et al. A novel model of murine mucopolysaccharidosis type VII due to an intracisternal a particle element transposition into the β-glucuronidase gene: clinical and pathologic findings. Pediatric research. 2001; 49(3):342–8.

25.

Krishan K, Kanchan T. Evaluation of spheno-occipital synchondrosis: A review of literature and considerations from forensic anthropologic point of view. Journal of forensic dental sciences. 2013; 5(2):72.

https://doi.org/10.4103/0975-1475.119764 PMID: 24255553

26.

Wei X, Hu M, Mishina Y, Liu F. Developmental regulation of the growth plate and cranial synchondrosis.

Journal of dental research. 2016; 95(11):1221–9. https://doi.org/10.1177/0022034516651823 PMID:

27250655

27.

Di Rocco F, Dubravova D, Ziyadeh J, Sainte-Rose C, Collet C, Arnaud E. The foramen magnum in isolated and syndromic brachycephaly. Child’s Nervous System. 2014; 30(1):165–72. https://doi.org/10.

1007/s00381-013-2245-y PMID: 24136083

28.

Jiang Z, Byers S, Casal ML, Smith LJ. Failures of Endochondral Ossification in the Mucopolysaccharidoses. Current Osteoporosis Reports. 2020:1–15.

29.

Mango RL, Xu L, Sands MS, Vogler C, Seiler G, Schwarz T, et al. Neonatal retroviral vector-mediated

hepatic gene therapy reduces bone, joint, and cartilage disease in mucopolysaccharidosis VII mice and

dogs. Molecular genetics and metabolism. 2004; 82(1):4–19. https://doi.org/10.1016/j.ymgme.2004.01.

015 PMID: 15110316

30.

Montagna A. Induced pluripotent stem cells (iPSCs) for modelling mucopolysaccharidosis type I (Hurler

syndrome).

31.

Simonaro CM, D’Angelo M, Haskins ME, Schuchman EH. Joint and bone disease in mucopolysaccharidoses VI and VII: identification of new therapeutic targets and biomarkers using animal models. Pediatric research. 2005; 57(5):701–7. https://doi.org/10.1203/01.PDR.0000156510.96253.5A PMID:

15746260

32.

Tylki-Szymanska A, Jurecka A, Zuber Z, Rozdzynska A, Marucha J, Czartoryska B. Enzyme replacement therapy for mucopolysaccharidosis II from 3 months of age: a 3-year follow-up. Acta Paediatrica.

2012; 101(1):e42–e7. https://doi.org/10.1111/j.1651-2227.2011.02385.x PMID: 21672014

33.

Rowan DJ, Tomatsu S, Grubb JH, Montaño AM, Sly WS. Assessment of bone dysplasia by micro-CT

and glycosaminoglycan levels in mouse models for mucopolysaccharidosis type I, IIIA, IVA, and VII.

Journal of inherited metabolic disease. 2013; 36(2):235–46. https://doi.org/10.1007/s10545-012-9522x PMID: 22971960

´ , et al. Neuroimaging findings in

Reichert R, Campos LG, Vairo F, de Souza CFM, Pe´rez JA, Duarte JA

patients with mucopolysaccharidosis: what you really need to know. Radiographics. 2016; 36(5):1448–

62. https://doi.org/10.1148/rg.2016150168 PMID: 27618324

34.

35.

Ghotme KA, Alvarado-Gomez F, Lampe C, White KK, Solano-Villareal M, Giugliani R, et al. Spinal cord

issues in adult patients with MPS: Transition of care survey. Child’s Nervous System. 2018; 34

(9):1759–65. https://doi.org/10.1007/s00381-018-3834-6 PMID: 29804213

PLOS ONE | https://doi.org/10.1371/journal.pone.0277140 November 10, 2022

13 / 13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る