リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Ordered Arrangement of Planar Faults with Picoscale Perfection in Titanium Oxide Natural Superlattices」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Ordered Arrangement of Planar Faults with Picoscale Perfection in Titanium Oxide Natural Superlattices

Harada, Shunta Kosaka, Naoki Tagawa, Miho Ujihara, Toru 名古屋大学

2021.05.27

概要

Coherent control of thermal phonons by atomic-scale periodic structures is of great interest due to the potential for advanced thermal management. However, the coherence is easily broken by interface roughness and interfaces with subatomic-scale perfection, which have never been achieved even by the advanced synthesis of artificial superlattice thin films, are strongly needed. Here, we demonstrated that the ordered arrangement of planar faults in titanium oxide natural superlattices has picoscale structural perfection. High-angle annular dark-field scanning transmission electron microscopy observation revealed that the average periodicity disorder was 36 pm for interface spacings of 2.64–2.85 nm, and the interface roughness was estimated to be 15 pm. Calculation of the specularity parameter indicates that the interface behaves coherently for phonons with a frequency of less than 23 THz, which includes almost all phonons in rutile TiO2. Coherent phonon transport should become apparent in the titanium oxide NSL system owing to these smooth interfaces, whose roughness is 1 order of magnitude lower than that in artificial superlattice thin films.

この論文で使われている画像

参考文献

(1) Narayanamurti, V. Phonon Optics and Phonon Propagation in Semiconductors. Science 1981, 213 (4509), 717–723. https://doi.org/10.1126/science.213.4509.717.

(2) Simkin, M. V.; Mahan, G. D. Minimum Thermal Conductivity of Superlattices. Phys. Rev. Lett. 2000, 84 (5), 927–930. https://doi.org/10.1103/PhysRevLett.84.927.

(3) Yu, J. K.; Mitrovic, S.; Tham, D.; Varghese, J.; Heath, J. R. Reduction of Thermal Conductivity in Phononic Nanomesh Structures. Nat. Nanotechnol. 2010, 5 (10), 718–721. https://doi.org/10.1038/nnano.2010.149.

(4) Dechaumphai, E.; Chen, R. Thermal Transport in Phononic Crystals: The Role of Zone Folding Effect. J. Appl. Phys. 2012, 111 (7). https://doi.org/10.1063/1.3699056.

(5) Maldovan, M. Sound and Heat Revolutions in Phononics. Nature 2013, 503 (7475), 209–217. https://doi.org/10.1038/nature12608.

(6) Maldovan, M. Phonon Wave Interference and Thermal Bandgap Materials. Nat. Mater. 2015, 14 (7), 667–674. https://doi.org/10.1038/nmat4308.

(7) Nomura, M.; Shiomi, J.; Shiga, T.; Anufriev, R. Thermal Phonon Engineering by Tailored Nanostructures. Jpn. J. Appl. Phys. 2018, 57 (8), 080101. https://doi.org/10.7567/JJAP.57.080101.

(8) Liao, Y.; Shiga, T.; Kashiwagi, M.; Shiomi, J. Akhiezer Mechanism Limits Coherent Heat Conduction in Phononic Crystals. Phys. Rev. B 2018, 98 (13), 134307. https://doi.org/10.1103/PhysRevB.98.134307.

(9) Alaie, S.; Goettler, D. F.; Su, M.; Leseman, Z. C.; Reinke, C. M.; El-Kady, I. Thermal Transport in Phononic Crystals and the Observation of Coherent Phonon Scattering at Room Temperature. Nat. Commun. 2015, 6. https://doi.org/10.1038/ncomms8228.

(10) Wagner, M. R.; Graczykowski, B.; Reparaz, J. S.; El Sachat, A.; Sledzinska, M.; Alzina, F.; Sotomayor Torres, C. M. Two-Dimensional Phononic Crystals: Disorder Matters. Nano Lett. 2016, 16 (9), 5661–5668. https://doi.org/10.1021/acs.nanolett.6b02305.

(11) Maire, J.; Anufriev, R.; Yanagisawa, R.; Ramiere, A.; Volz, S.; Nomura, M. Heat Conduction Tuning by Wave Nature of Phonons. Sci. Adv. 2017, 3 (8). https://doi.org/10.1126/sciadv.1700027.

(12) Wingert, M. C.; Chen, Z. C. Y.; Dechaumphai, E.; Moon, J.; Kim, J. H.; Xiang, J.; Chen, R. Thermal Conductivity of Ge and Ge-Si Core-Shell Nanowires in the Phonon Confinement Regime. Nano Lett. 2011, 11 (12), 5507–5513. https://doi.org/10.1021/nl203356h.

(13) Chen, J.; Zhang, G.; Li, B. Impacts of Atomistic Coating on Thermal Conductivity of Germanium Nanowires. Nano Lett. 2012, 12 (6), 2826–2832. https://doi.org/10.1021/nl300208c.

(14) Luckyanova, M. N.; Mendoza, J.; Lu, H.; Song, B.; Huang, S.; Zhou, J.; Li, M.; Dong, Y.; Zhou, H.; Garlow, J.; Wu, L.; Kirby, B. J.; Grutter, A. J.; Puretzky, A. A.; Zhu, Y.; Dresselhaus, M. S.; Gossard, A.; Chen, G. Phonon Localization in Heat Conduction. Sci. Adv. 2018, 4 (12), eaat9460. https://doi.org/10.1126/sciadv.aat9460.

(15) Taniguchi, T.; Terada, T.; Komatsubara, Y.; Ishibe, T.; Konoike, K.; Sanada, A.; Naruse, N.; Mera, Y.; Nakamura, Y. Phonon Transport in the Nano-System of Si and SiGe Films with Ge Nanodots and Approach to Ultralow Thermal Conductivity. Nanoscale 2021, 13 (9), 4971–4977. https://doi.org/10.1039/d0nr08499a.

(16) Yang, B.; Chen, G. Partially Coherent Phonon Heat Conduction in Superlattices. Phys. Rev. B 2003, 67 (19), 195311. https://doi.org/10.1103/PhysRevB.67.195311.

(17) Koh, Y. K.; Cao, Y.; Cahill, D. G.; Jena, D. Heat-Transport Mechanisms in Superlattices. Adv. Funct. Mater. 2009, 19 (4), 610–615. https://doi.org/10.1002/adfm.200800984.

(18) Luckyanova, M. N.; Garg, J.; Esfarjani, K.; Jandl, A.; Bulsara, M. T.; Schmidt, A. J.; Minnich, A. J.; Chen, S.; Dresselhaus, M. S.; Ren, Z.; Fitzgerald, E. A.; Chen, G. Coherent Phonon Heat Conduction in Superlattices. Science 2012, 338, 936–939. https://doi.org/10.1126/science.1225549.

(19) Luckyanova, M. N.; Johnson, J. A.; Maznev, A. A.; Garg, J.; Jandl, A.; Bulsara, M. T.; Fitzgerald, E. A.; Nelson, K. A.; Chen, G. Anisotropy of the Thermal Conductivity in GaAs/AlAs Superlattices. Nano Lett. 2013, 13 (9), 3973–3977. https://doi.org/10.1021/nl4001162.

(20) Ravichandran, J.; Yadav, A. K.; Cheaito, R.; Rossen, P. B.; Soukiassian, A.; Suresha, S. J.; Duda, J. C.; Foley, B. M.; Lee, C. H.; Zhu, Y.; Lichtenberger, A. W.; Moore, J. E.; Muller, D. A.; Schlom, D. G.; Hopkins, P. E.; Majumdar, A.; Ramesh, R.; Zurbuchen, M. A. Crossover from Incoherent to Coherent Phonon Scattering in Epitaxial Oxide Superlattices. Nat. Mater. 2014, 13 (2), 168–172. https://doi.org/10.1038/nmat3826.

(21) Saha, B.; Koh, Y. R.; Feser, J. P.; Sadasivam, S.; Fisher, T. S.; Shakouri, A.; Sands, T. D. Phonon Wave Effects in the Thermal Transport of Epitaxial TiN/(Al,Sc)N Metal/Semiconductor Superlattices. J. Appl. Phys. 2017, 121 (1), 015109. https://doi.org/10.1063/1.4973681.

(22) Hiroi, S.; Nishino, S.; Choi, S.; Seo, O.; Kim, J.; Chen, Y.; Song, C.; Tayal, A.; Sakata, O.; Takeuchi, T. Phonon Scattering at the Interfaces of Epitaxially Grown Fe2VAl/W and Fe2VAl/Mo Superlattices. J. Appl. Phys. 2019, 125 (22), 225101. https://doi.org/10.1063/1.5080976.

(23) Choi, S.; Hiroi, S.; Inukai, M.; Nishino, S.; Sobota, R.; Byeon, D.; Mikami, M.; Minamitani, E.; Matsunami, M.; Takeuchi, T. Crossover in Periodic Length Dependence of Thermal Conductivity in 5d Element Substituted Fe2VAl -Based Superlattices. Phys. Rev. B 2020, 102 (10), 104301. https://doi.org/10.1103/PhysRevB.102.104301.

(24) Ravichandran, J.; Yadav, A. K.; Cheaito, R.; Rossen, P. B.; Soukiassian, A.; Suresha, S. J.; Duda, J. C.; Foley, B. M.; Lee, C.-H.; Zhu, Y.; Lichtenberger, A. W.; Moore, J. E.; Muller, D. A.; Schlom, D. G.; Hopkins, P. E.; Majumdar, A.; Ramesh, R.; Zurbuchen, M. A. Crossover from Incoherent to Coherent Phonon Scattering in Epitaxial Oxide Superlattices. Nat. Mater. 2014, 13 (2), 168–172. https://doi.org/10.1038/nmat3826.

(25) Gomyo, A.; Suzuki, T.; Iijima, S. Observation of Strong Ordering in GaxIn1-xP Alloy Semiconductors. Phys. Rev. Lett. 1988, 60 (25), 2645–2648. https://doi.org/10.1103/PhysRevLett.60.2645.

(26) Takahata, K.; Iguchi, Y.; Tanaka, D.; Itoh, T.; Terasaki, I. Low Thermal Conductivity of the Layered Oxide Another Example of a Phonon Glass and an Electron Crystal. Phys. Rev. B - Condens. Matter Mater. Phys. 2000, 61 (19), 12551–12555. https://doi.org/10.1103/PhysRevB.61.12551.

(27) Ohta, H.; Nomura, K.; Orita, M.; Hirano, M.; Ueda, K.; Suzuki, T.; Ikuhara, Y.; Hosono, H. Single-Crystalline Films of the Homologous Series InGaO3(ZnO)m Grown by Reactive Solid-Phase Epitaxy. Adv. Funct. Mater. 2003, 13 (2), 139–144. https://doi.org/10.1002/adfm.200390020.

(28) Lee, K. H.; Kim, S. W.; Ohta, H.; Koumoto, K. Ruddlesden-Popper Phases as Thermoelectric Oxides: Nb-Doped SrO(SrTiO3)n (n = 1, 2). J. Appl. Phys. 2006, 100 (6), 063717. https://doi.org/10.1063/1.2349559.

(29) Jo, I.; Pettes, M. T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal Conductivity and Phonon Transport in Suspended Few-Layer Hexagonal Boron Nitride. Nano Lett. 2013, 13 (2), 550–554. https://doi.org/10.1021/nl304060g.

(30) Uematsu, Y.; Terada, T.; Sato, K.; Ishibe, T.; Nakamura, Y. Low Thermal Conductivity in Single Crystalline Epitaxial Germanane Films. Appl. Phys. Express 2020, 13 (5), 055503. https://doi.org/10.35848/1882-0786/ab8726.

(31) Andersson, S.; Collén, B.; Kuylenstierna, U.; Magnéli, A. Phase Analysis Studies on the Titanium-Oxygen System. Acta Chem. Scand. 1957, 11, 1641–1652. https://doi.org/10.3891/acta.chem.scand.11-1641.

(32) Anderson, J. S.; Hyde, B. G. On the Possible Role of Dislocations in Generating Ordered and Disordered Shear Structures. J. Phys. Chem. Solids 1967, 28 (8), 1393–1408. https://doi.org/10.1016/0022-3697(67)90268-5.

(33) Harada, S.; Tanaka, K.; Inui, H. Thermoelectric Properties and Crystallographic Shear Structures in Titanium Oxides of the Magǹli Phases. J. Appl. Phys. 2010, 108 (8), 083703. https://doi.org/10.1063/1.3498801.

(34) Le Page, Y.; Strobel, P. Structural Chemistry of the Magnéli Phases TinO2n-1, 4 ≤ n ≤ 9. II. Refinements and Structural Discussion. J. Solid State Chem. 1982, 44 (2), 273–281. https://doi.org/10.1016/0022-4596(82)90374-7.

(35) Bursill, L. A.; Hyde, B. G. Crystal Structures in the {l-32} CS Family of Higher Titanium Oxides TinO2n−1. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1971, 27 (1), 210–215. https://doi.org/10.1107/s0567740871001912.

(36) Teramoto, T.; Takai, Y.; Hashiguchi, H.; Okunishi, E.; Tanaka, K. Distribution of Alloying Quadrivalent Zirconium in TiO2-x Magnèli Phase. Mater. Trans. 2019, 60 (10), 2199–2203. https://doi.org/10.2320/matertrans.MT-M2019155.

(37) Chen, G. Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices. Phys. Rev. B - Condens. Matter Mater. Phys. 1998, 57 (23), 14958–14973. https://doi.org/10.1103/PhysRevB.57.14958.

(38) Lim, J.; Hippalgaonkar, K.; Andrews, S. C.; Majumdar, A.; Yang, P. Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires. Nano Lett. 2012, 12 (5), 2475–2482. https://doi.org/10.1021/nl3005868.

(39) Ong, Z. Y.; Schusteritsch, G.; Pickard, C. J. Structure-Specific Mode-Resolved Phonon Coherence and Specularity at Graphene Grain Boundaries. Phys. Rev. B 2020, 101 (19), 195410. https://doi.org/10.1103/PhysRevB.101.195410.

(40) Ziman, J. M. Electrons and Phonons; Clarendon: Oxford, 1960.

(41) Traylor, J. G.; Smith, H. G.; Nicklow, R. M.; Wilkinson, M. K. Lattice Dynamics of Rutile. Phys. Rev. B 1971, 3 (10), 3457–3472. https://doi.org/10.1103/PhysRevB.3.3457.

(42) Sikora, R. Ab Initio Study of Phonons in the Rutile Structure of TiO2. J. Phys. Chem. Solids 2005, 66 (6), 1069–1073. https://doi.org/10.1016/j.jpcs.2005.01.007.

(43) Chen, G. Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures. J. Heat Transfer 1997, 119 (2), 220–229. https://doi.org/10.1115/1.2824212.

(44) Aksamija, Z.; Knezevic, I. Thermal Conductivity of Si1-xGex/Si1-yGey Superlattices: Competition between Interfacial and Internal Scattering. Phys. Rev. B - Condens. Matter Mater. Phys. 2013, 88 (15), 155318. https://doi.org/10.1103/PhysRevB.88.155318.

(45) Ok, K. M.; Ohishi, Y.; Muta, H.; Kurosaki, K.; Yamanaka, S. Effect of Point and Planar Defects on Thermal Conductivity of TiO2−x. J. Am. Ceram. Soc. 2018, 101 (1), 334–346. https://doi.org/10.1111/jace.15171.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る