リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Local Atomic Structures for Tunable Ordered Arrangements of Crystallographic Shear Planes in Titanium-Chromium Oxide Natural Superlattices」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Local Atomic Structures for Tunable Ordered Arrangements of Crystallographic Shear Planes in Titanium-Chromium Oxide Natural Superlattices

Harada, Shunta Sugimoto, Shunya Kosaka, Naoki Tagawa, Miho Ujihara, Toru 名古屋大学

2021.07.22

概要

The atomic structure of titanium-chromium oxide natural superlattices with different compositions having an ordered arrangement of crystallographic shear (CS) planes was investigated by high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) as well as electron diffraction, using polycrystalline ceramics prepared by arc-melting and heat treatment. Analysis of the electron diffraction patterns revealed that not only the interspacing but also the direction of planar faults changed depending on the chromium concentration. HAADF-STEM observations showed that the atomic arrangements of CS planes deviating from (121)rutile are random arrangements of (121)rutile CS planes and (011)rutile anti-phase boundaries. Using a random walk model as well as by calculating the specularity parameter, we found that the CS planes in titanium-chromium oxides behave as coherent interfaces for phonons based on the estimation of interface roughness.

この論文で使われている画像

参考文献

(1) Narayanamurti, V. Phonon Optics and Phonon Propagation in Semiconductors. Science. 1981, 213 (4509), 717–723.

(2) Simkin, M. V.; Mahan, G. D. Minimum Thermal Conductivity of Superlattices. Phys. Rev. Lett. 2000, 84 (5), 927–930.

(3) Yu, J. K.; Mitrovic, S.; Tham, D.; Varghese, J.; Heath, J. R. Reduction of Thermal Conductivity in Phononic Nanomesh Structures. Nat. Nanotechnol. 2010, 5 (10), 718–721.

(4) Dechaumphai, E.; Chen, R. Thermal Transport in Phononic Crystals: The Role of Zone Folding Effect. J. Appl. Phys. 2012, 111 (7).

(5) Maldovan, M. Sound and Heat Revolutions in Phononics. Nature 2013, 503 (7475), 209–217.

(6) Maldovan, M. Phonon Wave Interference and Thermal Bandgap Materials. Nat. Mater. 2015, 14

(7), 667–674. (7) Wingert, M. C.; Chen, Z. C. Y.; Dechaumphai, E.; Moon, J.; Kim, J. H.; Xiang, J.; Chen, R. Thermal Conductivity of Ge and Ge-Si Core-Shell Nanowires in the Phonon Confinement Regime. Nano Lett. 2011, 11 (12), 5507–5513.

(8) Chen, J.; Zhang, G.; Li, B. Impacts of Atomistic Coating on Thermal Conductivity of Germanium Nanowires. Nano Lett. 2012, 12 (6), 2826– 2832.

(9) Luckyanova, M. N.; Mendoza, J.; Lu, H.; Song, B.; Huang, S.; Zhou, J.; Li, M.; Dong, Y.; Zhou, H.; Garlow, J.; et al. Phonon Localization in Heat Conduction. Sci. Adv. 2018, 4 (12), eaat9460.

(10) Uematsu, Y.; Terada, T.; Sato, K.; Ishibe, T.; Nakamura, Y. Low Thermal Conductivity in Single Crystalline Epitaxial Germanane Films. Appl. Phys. Express 2020, 13 (5), 055503.

(11) Taniguchi, T.; Terada, T.; Komatsubara, Y.; Ishibe, T.; Konoike, K.; Sanada, A.; Naruse, N.; Mera, Y.; Nakamura, Y. Phonon Transport in the Nano-System of Si and SiGe Films with Ge Nanodots and Approach to Ultralow Thermal Conductivity. Nanoscale 2021, 13 (9), 4971–4977.

(12) Alaie, S.; Goettler, D. F.; Su, M.; Leseman, Z. C.; Reinke, C. M.; ElKady, I. Thermal Transport in Phononic Crystals and the Observation of Coherent Phonon Scattering at Room Temperature. Nat. Commun. 2015, 6.

(13) Wagner, M. R.; Graczykowski, B.; Reparaz, J. S.; El Sachat, A.; Sledzinska, M.; Alzina, F.; Sotomayor Torres, C. M. Two-Dimensional Phononic Crystals: Disorder Matters. Nano Lett. 2016, 16 (9), 5661– 5668.

(14) Maire, J.; Anufriev, R.; Yanagisawa, R.; Ramiere, A.; Volz, S.; Nomura, M. Heat Conduction Tuning by Wave Nature of Phonons. Sci. Adv. 2017, 3 (8).

(15) Yang, B.; Chen, G. Partially Coherent Phonon Heat Conduction in Superlattices. Phys. Rev. B 2003, 67 (19), 195311.

(16) Koh, Y. K.; Cao, Y.; Cahill, D. G.; Jena, D. Heat-Transport Mechanisms in Superlattices. Adv. Funct. Mater. 2009, 19 (4), 610–615.

(17) Luckyanova, M. N.; Garg, J.; Esfarjani, K.; Jandl, A.; Bulsara, M. T.; Schmidt, A. J.; Minnich, A. J.; Chen, S.; Dresselhaus, M. S.; Ren, Z.; et al. Coherent Phonon Heat Conduction in Superlattices. Science (80-. ). 2012, 338, 936–939.

(18) Ravichandran, J.; Yadav, A. K.; Cheaito, R.; Rossen, P. B.; Soukiassian, A.; Suresha, S. J.; Duda, J. C.; Foley, B. M.; Lee, C. H.; Zhu, Y.; et al. Crossover from Incoherent to Coherent Phonon Scattering in Epitaxial Oxide Superlattices. Nat. Mater. 2014, 13 (2), 168–172.

(19) Saha, B.; Koh, Y. R.; Feser, J. P.; Sadasivam, S.; Fisher, T. S.; Shakouri, A.; Sands, T. D. Phonon Wave Effects in the Thermal Transport of Epitaxial TiN/(Al,Sc)N Metal/Semiconductor Superlattices. J. Appl. Phys. 2017, 121 (1), 015109.

(20) Yao, T. Thermal Properties of AlAs/GaAs Superlattices. Appl. Phys. Lett. 1987, 51 (22), 1798–1800.

(21) Chen, G. Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures. J. Heat Transfer 1997, 119 (2), 220–229. (22) Capinski, W. S.; Maris, H. J.; Ruf, T.; Cardona, M.; Ploog, K.; Katzer, D. S. Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique. Phys. Rev. B 1999, 59, 8105.

(23) Hiroi, S.; Nishino, S.; Choi, S.; Seo, O.; Kim, J.; Chen, Y.; Song, C.; Tayal, A.; Sakata, O.; Takeuchi, T. Phonon Scattering at the Interfaces of Epitaxially Grown Fe2VAl/W and Fe2VAl/Mo Superlattices. J. Appl. Phys. 2019, 125 (22), 225101.

(24) Choi, S.; Hiroi, S.; Inukai, M.; Nishino, S.; Sobota, R.; Byeon, D.; Mikami, M.; Minamitani, E.; Matsunami, M.; Takeuchi, T. Crossover in Periodic Length Dependence of Thermal Conductivity in 5d Element Substituted Fe2VAl -Based Superlattices. Phys. Rev. B 2020, 102 (10), 104301.

(25) Harada, S.; Kosaka, N.; Tagawa, M.; Ujihara, T. Ordered Arrangement of Planar Faults with Picoscale Perfection in Titanium Oxide Natural Superlattices. J. Phys. Chem. C 2021, 125 (20), 11175–11181.

(26) Anderson, J. S.; Hyde, B. G. On the Possible Role of Dislocations in Generating Ordered and Disordered Shear Structures. J. Phys. Chem. Solids 1967, 28 (8), 1393–1408.

(27) Harada, S.; Tanaka, K.; Inui, H. Thermoelectric Properties and Crystallographic Shear Structures in Titanium Oxides of the Magǹli Phases. J. Appl. Phys. 2010, 108 (8).

(28) Inoue, A.; Iguchi, E. Electrical Properties of Chromia-Doped Rutile (TiO2). J. Phys. C Solid State Phys. 1979, 12 (23), 5157–5170.

(29) Andersson, S.; Collén, B.; Kuylenstierna, U.; Magnéli, A. Phase Analysis Studies on the Titanium-Oxygen System. Acta Chem. Scand. 1957, 11, 1641–1652.

(30) Andersson, S.; Sundholm, A.; Magnéli, A.; Högberg, B.; Kneip, P.; Palmstierna, H. A Homologous Series of Mixed Titanium Chromium Oxides Ti(n-2)Cr2O(2n-1) Isomorphous with the Series Ti(n)O(2n-1) and V(n)O(2n-1). Acta Chem. Scand. 1959, 13, 989–997.

(31) Andersson, S.; Templeton, D. H.; Rundqvist, S.; Varde, E.; Westin, G. The Crystal Structure of Ti5O9. Acta Chem. Scand. 1960, 14, 1161–1172.

(32) Bursill, L. A. Crystallographic Shear in Molybdenum Trioxide. Proc. R. Soc. London. A. 1969, 311 (1505), 267–290.

(33) Bursill, L. A.; Hyde, B. G. Crystallographic Shear in the Higher Titanium Oxides: Structure, Texture, Mechanisms and Thermodynamics. Prog. Solid State Chem. 1972, 7, 177–253.

(34) Philp, D. K.; Bursill, L. A. Phase Analysis Studies of TitaniumChromium Oxides Derived from Rutile by Crystallographic Shear. J. Solid State Chem. 1974, 10 (4), 357–370.

(35) Bursill, L. A.; Hyde, B. G.; Philp, D. K. New Crystallographic Shear Families Derived from the Rutile Structure, and the Possibility of Continuous Ordered Solid Solution. Philos. Mag. 1971, 23 (186), 1501– 1513.

(36) Gibb, R. M.; Anderson, J. S. The System TiO2-Cr2O3: Electron Microscopy of Solid Solutions and Crystallographic Shear Structures. J. Solid State Chem. 1972, 4 (3), 379–390.

(37) Flörke, O. W.; Lee, C. W. Andersson Phasen, Dichteste Packung Und Wadsley Defekte Im System TiCrO. J. Solid State Chem. 1970, 1 (3–4), 445–453.

(38) Somiya, S.; Hirano, S.; Kamiya, S. Phase Relations of the Cr2O3-TiO2 System. J. Solid State Chem. 1978, 25 (3), 273–284.

(39) Kamiya, S.; Yoshimura, M.; Sōmiya, S. Microstructural Study for a Homologous Series of Cr2Tin−2O2n−1 with (1-21)r Crystallographic Shear Structure. Mater. Res. Bull. 1980, 15 (9), 1303–1312.

(40) Devi, P. S. Preparation of Fine Particle Cr2Ti2O7 Powders by the Citrate Gel Process. J. Solid State Chem. 1994, 110 (2), 345–349.

(41) Thurber, W. R.; Mante, A. J. H. Thermal Conductivity and Thermoelectric Power of Rutile (TiO2). Phys. Rev. 1965, 139 (5A), A1655.

(42) Smith, S. J.; Stevens, R.; Liu, S.; Li, G.; Navrotsky, A.; Boerio-Goates, J.; Woodfield, B. F. Heat Capacities and Thermodynamic Functions of TiO2 Anatase and Rutile: Analysis of Phase Stability. Am. Mineral. 2009, 94 (2–3), 236–243.

(43) Ziman, J. M. Electrons and Phonons; Clarendon: Oxford, 1960.

(44) Traylor, J. G.; Smith, H. G.; Nicklow, R. M.; Wilkinson, M. K. Lattice Dynamics of Rutile. Phys. Rev. B 1971, 3 (10), 3457–3472.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る