リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Understanding the dynamics of soil microbial communities and gas emissions under different soil amendments」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Understanding the dynamics of soil microbial communities and gas emissions under different soil amendments

Oraegbunam, Chidozie Johnson 北海道大学

2022.09.26

概要

Soil microbes play important roles in regulating the soil health. The addition of organic materials to the soils can improve the activities of the microbes. Specifically, soil microbes utilize carbon (C) from the applied organic materials to increase their abundance and activities. Contrastingly, soil microbes decompose the added materials and emit the C to the atmosphere as carbon dioxide (CO2). Studies have shown that charred organic materials like biochar can store C in the soil and improve the microbial activities. However, research to verify the impact of biochar on microbial community under different biochar applications is needed. Also, compared to biochar, manure can support microbial activities but the factors regulating the variabilities in manure decomposition are underexplored. First study investigated the effects of different biochar materials on the bacterial community. Second study examined microbial community using network analysis. Third experiment examined the decomposition of cow dung and gas emissions.A pot experiment was conducted to investigate the effects of different materials (chicken manure CM, rice straw RS, and rice husk RH) used to produce biochar on soil microbiome. The biochar was applied as single (CM, RS, and RH), combined form CM+RS, or CM+RH as mixed or surface under a dent corn. In results, surface applications increased the microbial diversity in the soil. This increase was attributed to the increased numbers of OTU such as Actinobacteria and Proteobacteria at the phylum level. Also, RS treatments impacted the microbial richness, and evenness under surface application. Thus, the effect on microbial diversities found in this study depends on the feedstock biochar, therefore biochar materials and application methods should be considered when interpreting its impact on the microbial community.The second study was aimed at investigating the microbial community interactions among different biochar materials using network analysis. Statistical analysis investigating the co-occurrence of microbial taxa were evaluated. The analysis was performed in R software and the network visualizations and correlation statistics were carried out in Gephi software. The results showed dominate phyla to be Proteobacteria, Actinobacteria, and Chloroflexi within the biochar materials. Further, rice husk biochar increased Euryarchaeota, while chicken manure biochar increased Planctomycetes in the soil. Therefore, variabilities of biochar feedstocks should be considered when choosing biochar type for soil amendment because different biochar materials have different impact on the microbial community structure. The third experiment was carried out to investigate the soil and dung properties influencing the decomposition of cow dung and gas emissions. An incubation study was set-up with the dung and soil sampled from 15 different farms within Hokkaido, Japan. Gas emissions was also measured. During the incubation, samples were taken at three different timings (before, middle, and final incubation) for microbial analysis. Results showed that Firmicutes and Bacteroidetes were significantly decreased while Proteobacteria and Actinobacteria increased during dung decomposition. Also, in each location, there are differences in CO2 emissions pattern which were categorized as high and low CO2 emissions. Following this trend, higher numbers of OTUs were found in low CO2 (3750) compared to the high CO2 (3438). Further insight revealed that soil properties strongly influenced the emissions pattern based on the positive Pearson correlation coefficient between high CO2 emissions and soil properties such as soil C, nitrogen, and CEC. These results indicate that soil properties were the strong determinant of dung decomposition and gas emissions.

この論文で使われている画像

参考文献

Aarons, S. R., O’Connor, C. R., & Gourley, C. J. P. (2004). Dung decomposition in temperate dairy pastures. I. Changes in soil chemical properties. Soil Research, 42(1), 107. https://doi.org/10.1071/SR03008

Aarons, S. R., O’Connor, C. R., Hosseini, H. M., & Gourley, C. J. P. (2009). Dung pads increase pasture production, soil nutrients and microbial biomass carbon in grazed dairy systems. Nutrient Cycling in Agroecosystems, 84(1), 81–92. https://doi.org/10.1007/s10705-008-9228-5

Abdellah, Y. A. Y., & Li, C. (2020). Livestock Manure Composting in Cold Regions: Challenges and Solutions. Agriculture (Pol’nohospodárstvo), 66(1), 1–14. https://doi.org/10.2478/agri-2020-0001

Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., & Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202–203, 183–191. https://doi.org/10.1016/j.geoderma.2013.03.003

Abujabhah, I. S., Doyle, R. B., Bound, S. A., & Bowman, J. P. (2018). Assessment of bacterial community composition, methanotrophic and nitrogen-cycling bacteria in three soils with different biochar application rates. Journal of Soils and Sediments, 18(1), 148–158. https://doi.org/10.1007/s11368-017-1733-1

Aciego Pietri, J. C., & Brookes, P. C. (2008). Relationships between soil pH and microbial properties in a UK arable soil. Soil Biology and Biochemistry, 40(7), 1856–1861. https://doi.org/10.1016/j.soilbio.2008.03.020

Ameloot, N., Graber, E. R., Verheijen, F. G. A., & De Neve, S. (2013). Interactions between biochar stability and soil organisms: Review and research needs. European Journal of Soil Science, 64(4), 379–390. https://doi.org/10.1111/ejss.12064

Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A., & Sherlock, R. R. (2011). Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54(5–6), 309–320. https://doi.org/10.1016/j.pedobi.2011.07.005

Attwood, G. T., Wakelin, S. A., Leahy, S. C., Rowe, S., Clarke, S., Chapman, D. F., Muirhead, R., & Jacobs, J. M. E. (2019). Applications of the Soil, Plant and Rumen Microbiomes in Pastoral Agriculture. Frontiers in Nutrition, 6. https://www.frontiersin.org/article/10.3389/fnut.2019.00107

Awad, Y. M., Wang, J., Igalavithana, A. D., Tsang, D. C. W., Kim, K.-H., Lee, S. S., & Ok, Y. S. (2018). Biochar Effects on Rice Paddy: Meta-analysis. In Advances in

Agronomy (Vol. 148, pp. 1–32). Elsevier. https://doi.org/10.1016/bs.agron.2017.11.005

Awasthi, M. K., Zhang, Z., Wang, Q., Shen, F., Li, R., Li, D., Ren, X., Wang, M., Chen, H., & Zhao, J. (2017). New insight with the effects of biochar amendment on bacterial diversity as indicators of biomarkers support the thermophilic phase during sewage sludge composting. Bioresource Technology, 238, 589–601. https://doi.org/10.1016/j.biortech.2017.04.100

Bang, H. S., Lee, J.-H., Kwon, O. S., Na, Y. E., Jang, Y. S., & Kim, W. H. (2005). Effects of paracoprid dung beetles (Coleoptera: Scarabaeidae) on the growth of pasture herbage and on the underlying soil. Applied Soil Ecology, 29(2), 165–171. https://doi.org/10.1016/j.apsoil.2004.11.001

Barberán, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2012). Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6(2), 343–351. https://doi.org/10.1038/ismej.2011.119

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. 2.

Bello, A., Han, Y., Zhu, H., Deng, L., Yang, W., Meng, Q., Sun, Y., Egbeagu, U. U., Sheng, S., Wu, X., Jiang, X., & Xu, X. (2020). Microbial community composition, cooccurrence network pattern and nitrogen transformation genera response to biochar addition in cattle manure-maize straw composting. Science of The Total Environment, 721, 137759. https://doi.org/10.1016/j.scitotenv.2020.137759

Blanco-Canqui, H. (2017). Biochar and Soil Physical Properties. Soil Science Society of America Journal, 81(4), 687–711. https://doi.org/10.2136/sssaj2017.01.0017

Blanco-Canqui, H., Laird, D. A., Heaton, E. A., Rathke, S., & Acharya, B. S. (2020). Soil carbon increased by twice the amount of biochar carbon applied after 6 years: Field evidence of negative priming. GCB Bioenergy, 12(4), 240–251. https://doi.org/10.1111/gcbb.12665

Bogunovic, I., Pereira, P., Galic, M., Bilandzija, D., & Kisic, I. (2020). Tillage system and farmyard manure impact on soil physical properties, CO2 emissions, and crop yield in an organic farm located in a Mediterranean environment (Croatia). Environmental Earth Sciences, 79(3), 70. https://doi.org/10.1007/s12665-020-8813-z

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9

Brewer, C. E., Hu, Y.-Y., Schmidt-Rohr, K., Loynachan, T. E., Laird, D. A., & Brown, R. C. (2012). Extent of Pyrolysis Impacts on Fast Pyrolysis Biochar Properties. Journal of Environmental Quality, 41(4), 1115–1122. https://doi.org/10.2134/jeq2011.0118

Brisson, V., Schmidt, J., Northen, T. R., Vogel, J. P., & Gaudin, A. (2019). A New Method to Correct for Habitat Filtering in Microbial Correlation Networks. Frontiers in Microbiology, 10. https://www.frontiersin.org/article/10.3389/fmicb.2019.00585

Buée, M., Reich, M., Murat, C., Morin, E., Nilsson, R. H., Uroz, S., & Martin, F. (2009). 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist, 184(2), 449–456. https://doi.org/10.1111/j.1469- 8137.2009.03003.x

Bush, T., Diao, M., Allen, R. J., Sinnige, R., Muyzer, G., & Huisman, J. (2017). Oxic-anoxic regime shifts mediated by feedbacks between biogeochemical processes and microbial community dynamics. Nature Communications, 8(1), 789. https://doi.org/10.1038/s41467-017-00912-x

Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B:

Biological Sciences, 368(1621), 20130122. https://doi.org/10.1098/rstb.2013.0122

Cai, Y., & Akiyama, H. (2016). Nitrogen loss factors of nitrogen trace gas emissions and leaching from excreta patches in grassland ecosystems: A summary of available data. Science of The Total Environment, 572, 185–195. https://doi.org/10.1016/j.scitotenv.2016.07.222

Cai, Y., Chang, S. X., & Cheng, Y. (2017). Greenhouse gas emissions from excreta patches of grazing animals and their mitigation strategies. Earth-Science Reviews, 171, 44– 57. https://doi.org/10.1016/j.earscirev.2017.05.013

Callaway, T. R., Dowd, S. E., Edrington, T. S., Anderson, R. C., Krueger, N., Bauer, N., Kononoff, P. J., & Nisbet, D. J. (2010). Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing1. Journal of Animal Science, 88(12), 3977–3983. https://doi.org/10.2527/jas.2010-2900

Cardona, C., Weisenhorn, P., Henry, C., & Gilbert, J. A. (2016). Network-based metabolic analysis and microbial community modeling. Current Opinion in Microbiology, 31, 124–131. https://doi.org/10.1016/j.mib.2016.03.008

Carrigg, C., Rice, O., Kavanagh, S., Collins, G., & O’Flaherty, V. (2007). DNA extraction method affects microbial community profiles from soils and sediment. Applied Microbiology and Biotechnology, 77(4), 955–964. https://doi.org/10.1007/s00253- 007-1219-y

Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering

Chemistry, 40, 1–15. https://doi.org/10.1016/j.jiec.2016.06.002

Chen, G., Fang, Y., Van Zwieten, L., Xuan, Y., Tavakkoli, E., Wang, X., & Zhang, R. (2021). Priming, stabilization and temperature sensitivity of native SOC is controlled by microbial responses and physicochemical properties of biochar. Soil Biology and Biochemistry, 154, 108139. https://doi.org/10.1016/j.soilbio.2021.108139

Chen, J., Liu, X., Li, L., Zheng, J., Qu, J., Zheng, J., Zhang, X., & Pan, G. (2015). Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short term biochar treatment across three sites from South China. Applied Soil Ecology, 91, 68–79. https://doi.org/10.1016/j.apsoil.2015.02.012

Chen, W., Wolf, B., Brüggemann, N., Butterbach-Bahl, K., & Zheng, X. (2011). Annual emissions of greenhouse gases from sheepfolds in Inner Mongolia. Plant and Soil, 340(1–2), 291–301. https://doi.org/10.1007/s11104-010-0367-5

Cheng, J., Li, F. Y., Wang, Y., Wang, Y., Liu, X., Zhang, J., Wang, Z., Li, Y., Wang, H., Yang, Z., & Potter, M. A. (2022). Dweller and tunneler dung beetles synergistically accelerate decomposition of cattle and horse dung in a semi-arid steppe. Agriculture, Ecosystems & Environment, 329, 107873. https://doi.org/10.1016/j.agee.2022.107873

Climate Change and Food Security: A Framework Document. (2008). 107. Conant, R. T., Cerri, C. E. P., Osborne, B. B., & Paustian, K. (2017). Grassland management impacts on soil carbon stocks: A new synthesis. Ecological Applications, 27(2), 662–668. https://doi.org/10.1002/eap.1473

Conant, R. T., Paustian, K., & Elliott, E. T. (2001). Grassland Management and Conversion into Grassland: Effects on Soil Carbon. Ecological Applications, 11(2), 343–355. https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research.10.

Domene, X., Mattana, S., Hanley, K., Enders, A., & Lehmann, J. (2014). Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biology and Biochemistry, 72, 152–162. https://doi.org/10.1016/j.soilbio.2014.01.035

Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., & Hacquard, S. (2018). Microbial Interkingdom Interactions in Roots Promote Arabidopsis Survival. Cell, 175(4), 973-983.e14. https://doi.org/10.1016/j.cell.2018.10.020

Evans, K. S., Mamo, M., Wingeyer, A., Schacht, W. H., Eskridge, K. M., Bradshaw, J., & Ginting, D. (2019a). Dung Beetles Increase Greenhouse Gas Fluxes from Dung Pats in a North Temperate Grassland. Journal of Environmental Quality, 48(3), 537–548. https://doi.org/10.2134/jeq2018.03.0111

Evans, K. S., Mamo, M., Wingeyer, A., Schacht, W. H., Eskridge, K. M., Bradshaw, J., & Ginting, D. (2019b). Soil Fauna Accelerate Dung Pat Decomposition and Nutrient Cycling into Grassland Soil. Rangeland Ecology & Management, 72(4), 667–677. https://doi.org/10.1016/j.rama.2019.01.008

Ewulo B. S. (2005). Effect of Poultry Dung and Cattle Manure on Chemical Properties of Clay and Sandy Clay Loam Soil. Journal of Animal and Veterinary Advances 4 (10):839-841.

Faust, K. (2021). Open challenges for microbial network construction and analysis. The ISME Journal, 15(11), 3111–3118. https://doi.org/10.1038/s41396-021-01027-4

Faust, K., & Raes, J. (2016). CoNet app: Inference of biological association networks using Cytoscape. F1000Research, 5, 1519. https://doi.org/10.12688/f1000research.9050.2

Fey, M. V., Mills, A. J., & Yaalon, D. H. (2006). The alternative meaning of pedoderm and its use for soil surface characterization. Geoderma, 133(3–4), 474–477. https://doi.org/10.1016/j.geoderma.2005.07.018

Flessa, H., & Beese, F. (2000). Laboratory Estimates of Trace Gas Emissions following Surface Application and Injection of Cattle Slurry. Journal of Environmental Quality, 29(1), 262–268. https://doi.org/10.2134/jeq2000.00472425002900010033x

Friedman, J., & Alm, E. J. (2012). Inferring Correlation Networks from Genomic Survey Data. PLOS Computational Biology, 8(9), e1002687. https://doi.org/10.1371/journal.pcbi.1002687

Fuhrman, J. A. (2009). Microbial community structure and its functional implications. Nature, 459(7244), 193–199. https://doi.org/10.1038/nature08058

Galvez, A., Sinicco, T., Cayuela, M. L., Mingorance, M. D., Fornasier, F., & Mondini, C. (2012). Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agriculture, Ecosystems & Environment, 160, 3–14. https://doi.org/10.1016/j.agee.2011.06.015

Gao, G.-F., Zhang, X.-M., Li, P.-F., Simon, M., Shen, Z.-J., Chen, J., Gao, C.-H., & Zheng,

H.-L. (2020). Examining Soil Carbon Gas (CO2, CH4) Emissions and the Effect on Functional Microbial Abundances in the Zhangjiang Estuary Mangrove Reserve. Journal of Coastal Research, 36(1), 54. https://doi.org/10.2112/JCOASTRES-D-18- 00107.1

Gao, S., & Deluca, T. (2016). Influence of Biochar on Soil Nutrient Transformations, Nutrient Leaching, and Crop Yield. Advances in Plants & Agriculture Research, 4, 00150. https://doi.org/10.15406/apar.2016.04.00150

Gaskin, J. W., Speir, A., Morris, L. M., Ogden, L., Harris, K., Lee, D., & Das, K. C. (2007). Potential for Pyrolysis Char to Affect Soil Moisture and Nutrient Status of a Loamy Sand Soil. 3.

Gerber, P. J., Hristov, A. N., Henderson, B., Makkar, H., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A. T., Yang, W. Z., Tricarico, J. M., Kebreab, E., Waghorn, G., Dijkstra, J., & Oosting, S. (2013). Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: A review. Animal, 7(s2), 220–234. https://doi.org/10.1017/S1751731113000876

Gorovtsov, A. V., Minkina, T. M., Mandzhieva, S. S., Perelomov, L. V., Soja, G., Zamulina, I. V., Rajput, V. D., Sushkova, S. N., Mohan, D., & Yao, J. (2020). The mechanisms of biochar interactions with microorganisms in soil. Environmental Geochemistry and Health, 42(8), 2495–2518. https://doi.org/10.1007/s10653-019-00412-5

Graber, E. R., Frenkel, O., Jaiswal, A. K., & Elad, Y. (2014). How may biochar influence severity of diseases caused by soilborne pathogens? Carbon Management, 5(2), 169– 183. https://doi.org/10.1080/17583004.2014.913360

Grandjean, M. (2015). Gephi introduction. 12.

Griffin, D. E., Wang, D., Parikh, S. J., & Scow, K. M. (2017). Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agriculture, Ecosystems & Environment, 236, 21–29. https://doi.org/10.1016/j.agee.2016.11.002

Griffiths, B. S., & Philippot, L. (2013). Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 37(2), 112–129. https://doi.org/10.1111/j.1574-6976.2012.00343.x

Gross, A., & Glaser, B. (2021). Meta-analysis on how manure application changes soil organic carbon storage. Scientific Reports, 11(1), 5516. https://doi.org/10.1038/s41598-021-82739-7

Guidi, L., Chaffron, S., Bittner, L., Eveillard, D., Larhlimi, A., Roux, S., Darzi, Y., Audic, S., Berline, L., Brum, J. R., Coelho, L. P., Espinoza, J. C. I., Malviya, S., Sunagawa, S., Dimier, C., Kandels-Lewis, S., Picheral, M., Poulain, J., Searson, S., … Gorsky,

G. (2016). Plankton networks driving carbon export in the oligotrophic ocean. Nature, 532(7600), 465–470. https://doi.org/10.1038/nature16942

Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46–59. https://doi.org/10.1016/j.agee.2015.03.015

Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., & Shen, Y. (2012). Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresource Technology, 112, 171–178. https://doi.org/10.1016/j.biortech.2012.02.099

Guo, Z., Han, J., Li, J., Xu, Y., & Wang, X. (2019). Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLOS ONE, 14(1), e0211163. https://doi.org/10.1371/journal.pone.0211163

Gupta, S., & Kua, H. W. (2017). Factors Determining the Potential of Biochar As a Carbon Capturing and Sequestering Construction Material: Critical Review. Journal of Materials in Civil Engineering, 29(9), 04017086. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001924

Hale, L., & Crowley, D. (2015). DNA extraction methodology for biochar-amended sand and clay. Biology and Fertility of Soils, 51(6), 733–738. https://doi.org/10.1007/s00374-015-1020-5

Hamady, M., Walker, J. J., Harris, J. K., Gold, N. J., & Knight, R. (2008). Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods, 5(3), 235–237. https://doi.org/10.1038/nmeth.1184

Hao, X., & Chang, C. (2002). Effect of 25 Annual Cattle Manure Applications on Soluble and Exchangeable Cations in Soil. Soil Science, 167(2), 126–134.

Hardie, M., Clothier, B., Bound, S., Oliver, G., & Close, D. (2014). Does biochar influence soil physical properties and soil water availability? Plant and Soil, 376(1–2), 347–361. https://doi.org/10.1007/s11104-013-1980-x

Harrison, M. T., Cullen, B. R., & Rawnsley, R. P. (2016). Modelling the sensitivity of agricultural systems to climate change and extreme climatic events. Agricultural Systems, 148, 135–148. https://doi.org/10.1016/j.agsy.2016.07.006

He, Z., Pagliari, P. H., & Waldrip, H. M. (2016). Applied and Environmental Chemistry of Animal Manure: A Review. Pedosphere, 26(6), 779–816. https://doi.org/10.1016/S1002-0160(15)60087-X

Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379–420. https://doi.org/10.1007/s42773-020-00065-z

Huang, D., Liu, L., Zeng, G., Xu, P., Huang, C., Deng, L., Wang, R., & Wan, J. (2017). The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere, 174, 545–553. https://doi.org/10.1016/j.chemosphere.2017.01.130

Iwasa, M., Moki, Y., & Takahashi, J. (2015). Effects of the Activity of Coprophagous Insects on Greenhouse Gas Emissions from Cattle Dung Pats and Changes in Amounts of Nitrogen, Carbon, and Energy. Environmental Entomology, 44(1), 106–113. https://doi.org/10.1093/ee/nvu023

J. W. Gaskin, C. Steiner, K. Harris, K. C. Das, & B. Bibens. (2008). Effect of LowTemperature Pyrolysis Conditions on Biochar for Agricultural Use. Transactions of the ASABE, 51(6), 2061–2069. https://doi.org/10.13031/2013.25409

Jaafar, N. M., Clode, P. L., & Abbott, L. K. (2014). Microscopy Observations of Habitable Space in Biochar for Colonization by Fungal Hyphae from Soil. Journal of Integrative Agriculture, 13(3), 483–490. https://doi.org/10.1016/S2095-3119(13)60703-0

Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using metaanalysis. Agriculture, Ecosystems & Environment, 144(1), 175–187. https://doi.org/10.1016/j.agee.2011.08.015

Kalu, S., Simojoki, A., Karhu, K., & Tammeorg, P. (2021). Long-term effects of softwood biochar on soil physical properties, greenhouse gas emissions and crop nutrient uptake in two contrasting boreal soils. Agriculture, Ecosystems & Environment, 316, 107454. https://doi.org/10.1016/j.agee.2021.107454

Kimura, A., & Uchida, Y. (2021). Evaluation of Microbial Diversity, Community Composition and Function in Mixed Cropping Systems Using Three Legume Species Under the Application of Biochar or Chemical Fertiliser [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-695338/v1

Kuramae, E. E., Yergeau, E., Wong, L. C., Pijl, A. S., Veen, J. A., & Kowalchuk, G. A. (2012). Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiology Ecology, 79(1), 12–24. https://doi.org/10.1111/j.1574-6941.2011.01192.x

L. Wang, K. R. Mankin, & G. L. Marchin. (2004). Survival of Fecal Bacteria in Dairy Cow Manure. Transactions of the ASAE, 47(4), 1239–1246. https://doi.org/10.13031/2013.16574

Lal, R., Griffin, M., Apt, J., Lave, L., & Morgan, M. G. (2004). Managing Soil Carbon. Science, 304(5669), 393–393. https://doi.org/10.1126/science.1093079

Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Applied and Environmental Microbiology, 75(15), 5111–5120. https://doi.org/10.1128/AEM.00335-09

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 43(9), 1812– 1836. https://doi.org/10.1016/j.soilbio.2011.04.022

Li, H.-Y., Wang, H., Wang, H.-T., Xin, P.-Y., Xu, X.-H., Ma, Y., Liu, W.-P., Teng, C.-Y., Jiang, C.-L., Lou, L.-P., Arnold, W., Cralle, L., Zhu, Y.-G., Chu, J.-F., Gilbert, J. A., & Zhang, Z.-J. (2018). The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. Microbiome, 6(1), 187. https://doi.org/10.1186/s40168-018-0561-x

Li, X., Hu, C., Delgado, J. A., Zhang, Y., & Ouyang, Z. (2007). Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain. Agricultural Water Management, 89(1), 137–147. https://doi.org/10.1016/j.agwat.2006.12.012

Li, X., Wang, T., Chang, S. X., Jiang, X., & Song, Y. (2020). Biochar increases soil microbial biomass but has variable effects on microbial diversity: A meta-analysis. Science of The Total Environment, 749, 141593. https://doi.org/10.1016/j.scitotenv.2020.141593

Liang, C., Schimel, J. P., & Jastrow, J. D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2(8). https://doi.org/10.1038/nmicrobiol.2017.105

Liu, H., Huang, Y., Duan, W., Qiao, C., Shen, Q., & Li, R. (2020). Microbial community composition turnover and function in the mesophilic phase predetermine chicken manure composting efficiency. Bioresource Technology, 313, 123658. https://doi.org/10.1016/j.biortech.2020.123658

Liu, H., Xu, F., Xie, Y., Wang, C., Zhang, A., Li, L., & Xu, H. (2018). Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Science of The Total Environment, 645, 702–709. https://doi.org/10.1016/j.scitotenv.2018.07.115

Liu, J., Zhang, M., Zhang, R., Zhu, W., & Mao, S. (2016). Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microbial Biotechnology, 9(2), 257–268. https://doi.org/10.1111/1751-7915.12345

Lombardi, B., Loaiza, S., Trujillo, C., Arevalo, A., Vázquez, E., Arango, J., & Chirinda, N. (2022). Greenhouse gas emissions from cattle dung depositions in two Urochloa forage fields with contrasting biological nitrification inhibition (BNI) capacity. Geoderma, 406, 115516. https://doi.org/10.1016/j.geoderma.2021.115516

Lu, H., Yan, M., Wong, M. H., Mo, W. Y., Wang, Y., Chen, X. W., & Wang, J.-J. (2020). Effects of biochar on soil microbial community and functional genes of a landfill cover three years after ecological restoration. Science of The Total Environment, 717, 137133. https://doi.org/10.1016/j.scitotenv.2020.137133

Lu, Y., Zhang, W., Li, Y., Zhang, C., Wang, L., Niu, L., & Zhang, H. (2021). Microbial community shift via black carbon: Insight into biological nitrogen removal from microbial assemblage and functional patterns. Environmental Research, 192, 110266. https://doi.org/10.1016/j.envres.2020.110266

Luna, G. M., Dell’Anno, A., & Danovaro, R. (2006). DNA extraction procedure: A critical issue for bacterial diversity assessment in marine sediments. Environmental Microbiology, 8(2), 308–320. https://doi.org/10.1111/j.1462-2920.2005.00896.x

Luo, X., Liu, G., Xia, Y., Chen, L., Jiang, Z., Zheng, H., & Wang, Z. (2017). Use of biocharcompost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. Journal of Soils and Sediments, 17(3), 780–789. https://doi.org/10.1007/s11368-016-1361-1

Lupatini, M., Suleiman, A. K. A., Jacques, R. J. S., Antoniolli, Z. I., de Siqueira Ferreira, A., Kuramae, E. E., & Roesch, L. F. W. (2014). Network topology reveals high connectance levels and few key microbial genera within soils. Frontiers in Environmental Science, 2. https://www.frontiersin.org/article/10.3389/fenvs.2014.00010

Lv, B., Xing, M., Yang, J., & Zhang, L. (2015). Pyrosequencing reveals bacterial community differences in composting and vermicomposting on the stabilization of mixed sewage sludge and cattle dung. Applied Microbiology and Biotechnology, 99(24), 10703– 10712. https://doi.org/10.1007/s00253-015-6884-7

Ma, B., Wang, H., Dsouza, M., Lou, J., He, Y., Dai, Z., Brookes, P. C., Xu, J., & Gilbert, J. A. (2016). Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. The ISME Journal, 10(8), 1891– 1901. https://doi.org/10.1038/ismej.2015.261

Ma, J., Zhang, W., Zhang, S., Zhu, Q., Feng, Q., & Chen, F. (2017). Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario. PeerJ, 5, e4024. https://doi.org/10.7717/peerj.4024

Maeda, K., Hanajima, D., Morioka, R., Toyoda, S., Yoshida, N., & Osada, T. (2013).

Mitigation of greenhouse gas emission from the cattle manure composting process by use of a bulking agent. Soil Science and Plant Nutrition, 59(1), 96–106. https://doi.org/10.1080/00380768.2012.733868

Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2012). Nutrient Leaching in a Colombian Savanna Oxisol Amended with Biochar. Journal of Environmental Quality, 41(4), 1076–1086. https://doi.org/10.2134/jeq2011.0128

Maldonado, M. B., Aranibar, J. N., Serrano, A. M., Chacoff, N. P., & Vázquez, D. P. (2019). Dung beetles and nutrient cycling in a dryland environment. CATENA, 179, 66–73. https://doi.org/10.1016/j.catena.2019.03.035

Maljanen, M., Martikkala, M., Koponen, H., Virkajarvi, P., & Martikainen, P. (2007). Fluxes of nitrous oxide and nitric oxide from experimental excreta patches in boreal agricultural soil. Soil Biology and Biochemistry, 39(4), 914–920. https://doi.org/10.1016/j.soilbio.2006.11.001

Manyi-Loh, C., Mamphweli, S., Meyer, E., Makaka, G., Simon, M., & Okoh, A. (2016). An Overview of the Control of Bacterial Pathogens in Cattle Manure. International Journal of Environmental Research and Public Health, 13(9), 843. https://doi.org/10.3390/ijerph13090843

Maron, P.-A., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O., Guigue, J., Karimi, B., Bernard, L., Dequiedt, S., Terrat, S., Chabbi, A., & Ranjard, L. (2018). High

Microbial Diversity Promotes Soil Ecosystem Functioning. Applied and Environmental Microbiology, 84(9), e02738-17. https://doi.org/10.1128/AEM.02738-17

Martins, C. S. C., Nazaries, L., Delgado-Baquerizo, M., Macdonald, C. A., Anderson, I. C., Hobbie, S. E., Venterea, R. T., Reich, P. B., & Singh, B. K. (2017). Identifying environmental drivers of greenhouse gas emissions under warming and reduced rainfall in boreal–temperate forests. Functional Ecology, 31(12), 2356–2368. https://doi.org/10.1111/1365-2435.12928

Matchado, M. S., Lauber, M., Reitmeier, S., Kacprowski, T., Baumbach, J., Haller, D., & List, M. (2021). Network analysis methods for studying microbial communities: A mini review. Computational and Structural Biotechnology Journal, 19, 2687–2698. https://doi.org/10.1016/j.csbj.2021.05.001

McCormack, S. A., Ostle, N., Bardgett, R. D., Hopkins, D. W., & Vanbergen, A. J. (2013). Biochar in bioenergy cropping systems: Impacts on soil faunal communities and linked ecosystem processes. GCB Bioenergy, 5(2), 81–95. https://doi.org/10.1111/gcbb.12046

McSherry, M. E., & Ritchie, M. E. (2013). Effects of grazing on grassland soil carbon: A global review. Global Change Biology, 19(5), 1347–1357. https://doi.org/10.1111/gcb.12144

Meier, S., Curaqueo, G., Khan, N., Bolan, N., Rilling, J., Vidal, C., Fernández, N., Acuña, J., González, M.-E., Cornejo, P., & Borie, F. (2017). Effects of biochar on copper immobilization and soil microbial communities in a metal-contaminated soil. Journal of Soils and Sediments, 17(5), 1237–1250. https://doi.org/10.1007/s11368-015-1224-1

Menéndez, R., Webb, P., & Orwin, K. H. (2016). Complementarity of dung beetle species with different functional behaviours influence dung–soil carbon cycling. Soil Biology and Biochemistry, 92, 142–148. https://doi.org/10.1016/j.soilbio.2015.10.004

Meng, Q., Yang, W., Men, M., Bello, A., Xu, X., Xu, B., Deng, L., Jiang, X., Sheng, S., Wu, X., Han, Y., & Zhu, H. (2019). Microbial Community Succession and Response to Environmental Variables During Cow Manure and Corn Straw Composting. Frontiers in Microbiology, 10. https://www.frontiersin.org/article/10.3389/fmicb.2019.00529

Mengqi, Z., Shi, A., Ajmal, M., Ye, L., & Awais, M. (2021). Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01438-5

Mills, A. J., & Fey, M. V. (2004). Frequent fires intensify soil crusting: Physicochemical feedback in the pedoderm of long-term burn experiments in South Africa. Geoderma, 121(1–2), 45–64. https://doi.org/10.1016/j.geoderma.2003.10.004

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., … Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002

Mishra, J., Prakash, J., & Arora, N. K. (2016). Role of Beneficial Soil Microbes in Sustainable Agriculture and Environmental Management. Climate Change and Environmental Sustainability, 4(2), 137. https://doi.org/10.5958/2320-642X.2016.00015.6

Mudge, P. L., Wallace, D. F., Rutledge, S., Campbell, D. I., Schipper, L. A., & Hosking, C. L. (2011). Carbon balance of an intensively grazed temperate pasture in two climatically contrasting years. Agriculture, Ecosystems & Environment, 144(1), 271– 280. https://doi.org/10.1016/j.agee.2011.09.003

Mukherjee, A., Lal, R., & Zimmerman, A. R. (2014). Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of The Total Environment, 487, 26–36. https://doi.org/10.1016/j.scitotenv.2014.03.141

Myrold, D. D., Zeglin, L. H., & Jansson, J. K. (2014). The Potential of Metagenomic Approaches for Understanding Soil Microbial Processes. Soil Science Society of America Journal, 78(1), 3–10. https://doi.org/10.2136/sssaj2013.07.0287dgs

Nakatsu, C. H. (2007). Soil Microbial Community Analysis Using Denaturing Gradient Gel Electrophoresis. Soil Science Society of America Journal, 71(2), 562–571. https://doi.org/10.2136/sssaj2006.0080

Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019, e5794869. https://doi.org/10.1155/2019/5794869

Nielsen, S., Minchin, T., Kimber, S., van Zwieten, L., Gilbert, J., Munroe, P., Joseph, S., & Thomas, T. (2014). Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agriculture, Ecosystems & Environment, 191, 73–82. https://doi.org/10.1016/j.agee.2014.04.006

Nielsen, U. N., Ayres, E., Wall, D. H., & Bardgett, R. D. (2011). Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity–function relationships. European Journal of Soil Science, 62(1), 105–116. https://doi.org/10.1111/j.1365- 2389.2010.01314.x

Nyamangara, J., Gotosa, J., & Mpofu, S. E. (2001). Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe. Soil and Tillage Research, 62(3–4), 157–162. https://doi.org/10.1016/S0167-1987(01)00215-X

Ogle, S. M., Alsaker, C., Baldock, J., Bernoux, M., Breidt, F. J., McConkey, B., Regina, K., & Vazquez-Amabile, G. G. (2019). Climate and Soil Characteristics Determine Where No-Till Management Can Store Carbon in Soils and Mitigate Greenhouse Gas Emissions. Scientific Reports, 9(1), 11665. https://doi.org/10.1038/s41598-019- 47861-7

Oka, M., & Uchida, Y. (2018). Heavy metals in slag affect inorganic N dynamics and soil bacterial community structure and function. Environmental Pollution, 243, 713–722. https://doi.org/10.1016/j.envpol.2018.09.024

Oliveira, F. R., Patel, A. K., Jaisi, D. P., Adhikari, S., Lu, H., & Khanal, S. K. (2017). Environmental application of biochar: Current status and perspectives. Bioresource Technology, 246, 110–122. https://doi.org/10.1016/j.biortech.2017.08.122

Oraegbunam, C. J., Obalum, S. E., Watanabe, T., Madegwa, Y. M., & Uchida, Y. (2022). Differences in carbon and nitrogen retention and bacterial diversity in sandy soil in response to application methods of charred organic materials. Applied Soil Ecology, 170, 104284. https://doi.org/10.1016/j.apsoil.2021.104284

O’Toole, A., Moni, C., Weldon, S., Schols, A., Carnol, M., Bosman, B., & Rasse, D. (2018). Miscanthus Biochar had Limited Effects on Soil Physical Properties, Microbial Biomass, and Grain Yield in a Four-Year Field Experiment in Norway. Agriculture, 8(11), 171. https://doi.org/10.3390/agriculture8110171

Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., Bolan, N., Wang, H., & Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: A critical review. Biochar, 1(1), 3–22. https://doi.org/10.1007/s42773-019-00009-2

Parham, J. A., Deng, S. P., Da, H. N., Sun, H. Y., & Raun, W. R. (2003). Long-term cattle manure application in soil. II. Effect on soil microbial populations and community structure. Biology and Fertility of Soils, 38(4), 209–215. https://doi.org/10.1007/s00374-003-0657-7

Paul, E. A. (2016). The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry, 98, 109–126. https://doi.org/10.1016/j.soilbio.2016.04.001

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climatesmart soils. Nature, 532(7597), 49–57. https://doi.org/10.1038/nature17174

Pecenka, J. R., & Lundgren, J. G. (2018). The importance of dung beetles and arthropod communities on degradation of cattle dung pats in eastern South Dakota. PeerJ, 6, e5220. https://doi.org/10.7717/peerj.5220

Pereira, R. F., Cardoso, E. J. B. N., Oliveira, F. C., Estrada-Bonilla, G. A., & Cerri, C. E. P. (2018). A novel way of assessing C dynamics during urban organic waste composting and greenhouse gas emissions in tropical region. Bioresource Technology Reports, 3, 35–42. https://doi.org/10.1016/j.biteb.2018.02.002

Popay, A. J., & Hume, D. E. (2011). Endophytes improve ryegrass persistence by controlling insects. NZGA: Research and Practice Series, 15, 149–156. https://doi.org/10.33584/rps.15.2011.3196

Porter, S. S., Bantay, R., Friel, C. A., Garoutte, A., Gdanetz, K., Ibarreta, K., Moore, B. M., Shetty, P., Siler, E., & Friesen, M. L. (2020). Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Functional Ecology, 34(10), 2075–2086. https://doi.org/10.1111/1365-2435.13499

Poudel, R., Jumpponen, A., Schlatter, D. C., Paulitz, T. C., Gardener, B. B. M., Kinkel, L. L., & Garrett, K. A. (2016). Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management.

Phytopathology®, 106(10), 1083–1096. https://doi.org/10.1094/PHYTO-02-16-0058-FI

Qiao, C., Ryan Penton, C., Liu, C., Shen, Z., Ou, Y., Liu, Z., Xu, X., Li, R., & Shen, Q. (2019). Key extracellular enzymes triggered high-efficiency composting associated with bacterial community succession. Bioresource Technology, 288, 121576. https://doi.org/10.1016/j.biortech.2019.121576

Qiu, W., Liu, J., Li, B., & Wang, Z. (2020). N2O and CO2 emissions from a dryland wheat cropping system with long-term N fertilization and their relationships with soil C, N, and bacterial community. Environmental Science and Pollution Research, 27(8), 8673–8683. https://doi.org/10.1007/s11356-019-07534-4

Qiu, X., Zhou, G., Zhang, J., & Wang, W. (2019). Microbial community responses to biochar addition when a green waste and manure mix are composted: A molecular ecological network analysis. Bioresource Technology, 273, 666–671.https://doi.org/10.1016/j.biortech.2018.12.001

Quilliam, R. S., Glanville, H. C., Wade, S. C., & Jones, D. L. (2013). Life in the ‘charosphere’– Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biology and Biochemistry, 65, 287–293. https://doi.org/10.1016/j.soilbio.2013.06.004

Quilliam, R. S., Marsden, K. A., Gertler, C., Rousk, J., DeLuca, T. H., & Jones, D. L. (2012). Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agriculture, Ecosystems & Environment, 158, 192–199. https://doi.org/10.1016/j.agee.2012.06.011

Quinn, T. P., Richardson, M. F., Lovell, D., & Crowley, T. M. (2017). propr: An R-package for Identifying Proportionally Abundant Features Using Compositional Data Analysis. Scientific Reports, 7(1), 16252. https://doi.org/10.1038/s41598-017- 16520-0

Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H.-J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122–137. https://doi.org/10.1016/j.geoderma.2017.11.009

Rayne, N., & Aula, L. (2020). Livestock Manure and the Impacts on Soil Health: A Review. Soil Systems, 4(4), 64. https://doi.org/10.3390/soilsystems4040064

Ren, G., Xu, X., Qu, J., Zhu, L., & Wang, T. (2016). Evaluation of microbial population dynamics in the co-composting of cow manure and rice straw using high throughput sequencing analysis. World Journal of Microbiology and Biotechnology, 32(6), 1–11. https://doi.org/10.1007/s11274-016-2059-7

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander, E. S., Mitzenmacher, M., & Sabeti, P. C. (2011). Detecting Novel Associations in Large Data Sets. Science, 334(6062), 1518–1524. https://doi.org/10.1126/science.1205438

Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K. M., Kent, A. D., Daroub, S. H., Camargo, F. A. O., Farmerie, W. G., & Triplett, E. W. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1(4), 283–290. https://doi.org/10.1038/ismej.2007.53

Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., & Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4(10), 1340–1351. https://doi.org/10.1038/ismej.2010.58

Roy, S., & Kashem, M. A. (2014). Effects of Organic Manures in Changes of Some Soil Properties at Different Incubation Periods. Open Journal of Soil Science, 2014. https://doi.org/10.4236/ojss.2014.43011

Rutigliano, F. A., Romano, M., Marzaioli, R., Baglivo, I., Baronti, S., Miglietta, F., & Castaldi, S. (2014). Effect of biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology, 60, 9–15. https://doi.org/10.1016/j.ejsobi.2013.10.007

Sanchez-Monedero, M. A., Cayuela, M. L., Roig, A., Jindo, K., Mondini, C., & Bolan, N. (2018). Role of biochar as an additive in organic waste composting. Bioresource Technology, 247, 1155–1164. https://doi.org/10.1016/j.biortech.2017.09.193

Santos, F., Torn, M. S., & Bird, J. A. (2012). Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biology and Biochemistry, 51, 115–124. https://doi.org/10.1016/j.soilbio.2012.04.005

Sarauer, J. L., Page-Dumroese, D. S., & Coleman, M. D. (2019). Soil greenhouse gas, carbon content, and tree growth response to biochar amendment in western United States forests. GCB Bioenergy, 11(5), 660–671. https://doi.org/10.1111/gcbb.12595

Schmid, C. A. O., Schröder, P., Armbruster, M., & Schloter, M. (2018). Organic Amendments in a Long-term Field Trial—Consequences for the Bulk Soil Bacterial Community as Revealed by Network Analysis. Microbial Ecology, 76(1), 226–239. https://doi.org/10.1007/s00248-017-1110-z

Schnee, L. S., Knauth, S., Hapca, S., Otten, W., & Eickhorst, T. (2016). Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat. Plant and Soil, 408(1–2), 357–368. https://doi.org/10.1007/s11104-016-2935-9

Shakoor, A., Arif, M. S., Shahzad, S. M., Farooq, T. H., Ashraf, F., Altaf, M. M., Ahmed, W., Tufail, M. A., & Ashraf, M. (2021). Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil? - A global meta-analysis. Environmental Research, 202, 111789. https://doi.org/10.1016/j.envres.2021.111789

Shakoor, A., Ashraf, F., Shakoor, S., Mustafa, A., Rehman, A., & Altaf, M. M. (2020). Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environmental

Science and Pollution Research, 27(31), 38513–38536. https://doi.org/10.1007/s11356-020-10151-1

Shanks, O. C., Kelty, C. A., Archibeque, S., Jenkins, M., Newton, R. J., McLellan, S. L., Huse, S. M., & Sogin, M. L. (2011). Community Structures of Fecal Bacteria in Cattle from Different Animal Feeding Operations. Applied and Environmental Microbiology, 77(9), 2992–3001. https://doi.org/10.1128/AEM.02988-10

Shen, G., Ashworth, D. J., Gan, J., & Yates, S. R. (2016). Biochar Amendment to the Soil Surface Reduces Fumigant Emissions and Enhances Soil Microorganism Recovery. Environmental Science & Technology, 50(3), 1182–1189. https://doi.org/10.1021/acs.est.5b03958

Sheng, Y., & Zhu, L. (2018). Biochar alters microbial community and carbon sequestration potential across different soil pH. Science of The Total Environment, 622–623, 1391–1399. https://doi.org/10.1016/j.scitotenv.2017.11.337

Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S., & Janssens, I. (2015). Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. Journal of Advances in Modeling Earth Systems, 7(1), 335–356. https://doi.org/10.1002/2014MS000358

Sitters, J., Maechler, M.-J., Edwards, P. J., Suter, W., & Olde Venterink, H. (2014). Interactions between C:N :P stoichiometry and soil macrofauna control dung decomposition of savanna herbivores. Functional Ecology, 28(3), 776–786. https://doi.org/10.1111/1365-2435.12213

Sjögersten, S., Caul, S., Daniell, T. J., Jurd, A. P. S., O’Sullivan, O. S., Stapleton, C. S., & Titman, J. J. (2016). Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil Biology and Biochemistry, 98, 42–53. https://doi.org/10.1016/j.soilbio.2016.03.016

Slade, E. M., Kirwan, L., Bell, T., Philipson, C. D., Lewis, O. T., & Roslin, T. (2017). The importance of species identity and interactions for multifunctionality depends on how ecosystem functions are valued. Ecology, 98(10), 2626–2639. https://doi.org/10.1002/ecy.1954

Slade, E. M., Riutta, T., Roslin, T., & Tuomisto, H. L. (2016). The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Scientific Reports, 6(1), 18140. https://doi.org/10.1038/srep18140

Slade, E. M., Roslin, T., Santalahti, M., & Bell, T. (2016b). Disentangling the ‘brown world’ faecal–detritus interaction web: Dung beetle effects on soil microbial properties. Oikos, 125(5), 629–635. https://doi.org/10.1111/oik.02640

Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A Review of Biochar and Its Use and Function in Soil. In Advances in Agronomy (Vol. 105, pp. 47–82). Elsevier. https://doi.org/10.1016/S0065-2113(10)05002-9

Spigarelli, B. P., & Kawatra, S. K. (2013). Opportunities and challenges in carbon dioxide capture. Journal of CO2 Utilization, 1, 69–87. https://doi.org/10.1016/j.jcou.2013.03.002

Steele, J. A., Countway, P. D., Xia, L., Vigil, P. D., Beman, J. M., Kim, D. Y., Chow, C.-E.

T., Sachdeva, R., Jones, A. C., Schwalbach, M. S., Rose, J. M., Hewson, I., Patel, A., Sun, F., Caron, D. A., & Fuhrman, J. A. (2011). Marine bacterial, archaeal and protistan association networks reveal ecological linkages. The ISME Journal, 5(9), 1414–1425. https://doi.org/10.1038/ismej.2011.24

Steiner, C., Das, K. c., Melear, N., & Lakly, D. (2010). Reducing Nitrogen Loss during Poultry Litter Composting Using Biochar. Journal of Environmental Quality, 39(4), 1236–1242. https://doi.org/10.2134/jeq2009.0337

Stewart, C. E., Zheng, J., Botte, J., & Cotrufo, M. F. (2013). Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. GCB Bioenergy, 5(2), 153–164. https://doi.org/10.1111/gcbb.12001

Sun, Y., Men, M., Xu, B., Meng, Q., Bello, A., Xu, X., & Huang, X. (2019). Assessing key microbial communities determining nitrogen transformation in composting of cow manure using illumina high-throughput sequencing. Waste Management, 92, 59–67. https://doi.org/10.1016/j.wasman.2019.05.007

Thakuria, D., Schmidt, O., Mac Siúrtáin, M., Egan, D., & Doohan, F. M. (2008). Importance of DNA quality in comparative soil microbial community structure analyses. Soil Biology and Biochemistry, 40(6), 1390–1403. https://doi.org/10.1016/j.soilbio.2007.12.027

Thom, E. R., Popay, A. J., Hume, D. E., & Fletcher, L. R. (2012). Evaluating the performance of endophytes in farm systems to improve farmer outcomes—A review. Crop and Pasture Science, 63(10), 927. https://doi.org/10.1071/CP12152

Wall, R., & Beynon, S. (2012). Area-wide impact of macrocyclic lactone parasiticides in cattle dung. Medical and Veterinary Entomology, 26(1), 1–8. https://doi.org/10.1111/j.1365-2915.2011.00984.x

Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282

Wang, Y., Hu, Y., Zhao, X., Wang, S., & Xing, G. (2013). Comparisons of Biochar Properties from Wood Material and Crop Residues at Different Temperatures and Residence Times. Energy & Fuels, 27(10), 5890–5899. https://doi.org/10.1021/ef400972z

Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240–261. https://doi.org/10.1016/j.fuel.2017.12.054

Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., Xia, L. C., Xu, Z. Z., Ursell, L., Alm, E. J., Birmingham, A., Cram, J. A., Fuhrman, J. A., Raes, J., Sun, F., Zhou, J., & Knight, R. (2016). Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. The ISME Journal, 10(7), 1669–1681. https://doi.org/10.1038/ismej.2015.235

Whitehead, D., Schipper, L. A., Pronger, J., Moinet, G. Y. K., Mudge, P. L., Calvelo Pereira, R., Kirschbaum, M. U. F., McNally, S. R., Beare, M. H., & Camps-Arbestain, M. (2018). Management practices to reduce losses or increase soil carbon stocks in temperate grazed grasslands: New Zealand as a case study. Agriculture, Ecosystems & Environment, 265, 432–443. https://doi.org/10.1016/j.agee.2018.06.022

Whitman, T., Pepe-Ranney, C., Enders, A., Koechli, C., Campbell, A., Buckley, D. H., & Lehmann, J. (2016). Dynamics of microbial community composition and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter. The ISME Journal, 10(12), 2918–2930. https://doi.org/10.1038/ismej.2016.68

Windeatt, J. H., Ross, A. B., Williams, P. T., Forster, P. M., Nahil, M. A., & Singh, S. (2014). Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. Journal of Environmental Management, 146, 189–197. https://doi.org/10.1016/j.jenvman.2014.08.003

Wong, J. T. F., Chen, X., Deng, W., Chai, Y., Ng, C. W. W., & Wong, M. H. (2019). Effects of biochar on bacterial communities in a newly established landfill cover topsoil. Journal of Environmental Management, 236, 667–673. https://doi.org/10.1016/j.jenvman.2019.02.010

Wu, X., Duffy, J. E., Reich, P. B., & Sun, S. (2011). A brown-world cascade in the dung decomposer food web of an alpine meadow: Effects of predator interactions and warming. Ecological Monographs, 81(2), 313–328. https://doi.org/10.1890/10-0808.1

Xia, L. C., Ai, D., Cram, J., Fuhrman, J. A., & Sun, F. (2013). Efficient statistical significance approximation for local similarity analysis of high-throughput time series data. Bioinformatics, 29(2), 230–237. https://doi.org/10.1093/bioinformatics/bts668

Xu, N., Tan, G., Wang, H., & Gai, X. (2016). Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology, 74, 1–8. https://doi.org/10.1016/j.ejsobi.2016.02.004

Xu, W., Whitman, W. B., Gundale, M. J., Chien, C.-C., & Chiu, C.-Y. (2021). Functional response of the soil microbial community to biochar applications. GCB Bioenergy, 13(1), 269–281. https://doi.org/10.1111/gcbb.12773

Yamada, D., Imura, O., Shi, K., & Shibuya, T. (2007). Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassland Science, 53(2), 121–129. https://doi.org/10.1111/j.1744-697X.2007.00082.x

Yang, C., Liu, J., & Lu, S. (2021). Pyrolysis temperature affects pore characteristics of rice straw and canola stalk biochars and biochar-amended soils. Geoderma, 397, 115097. https://doi.org/10.1016/j.geoderma.2021.115097

Yang, S., Chen, Z., & Wen, Q. (2021). Impacts of biochar on anaerobic digestion of swine manure: Methanogenesis and antibiotic resistance genes dissemination. Bioresource Technology, 324, 124679. https://doi.org/10.1016/j.biortech.2021.124679

Yang, X., Meng, J., Lan, Y., Chen, W., Yang, T., Yuan, J., Liu, S., & Han, J. (2017). Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agriculture, Ecosystems & Environment, 240, 24–31. https://doi.org/10.1016/j.agee.2017.02.001

Yang, X., Tsibart, A., Nam, H., Hur, J., El-Naggar, A., Tack, F. M. G., Wang, C.-H., Lee, Y. H., Tsang, D. C. W., & Ok, Y. S. (2019). Effect of gasification biochar application on soil quality: Trace metal behavior, microbial community, and soil dissolved organic matter. Journal of Hazardous Materials, 365, 684–694. https://doi.org/10.1016/j.jhazmat.2018.11.042

Yao, Q., Liu, J., Yu, Z., Li, Y., Jin, J., Liu, X., & Wang, G. (2017). Changes of bacterial community compositions after three years of biochar application in a black soil of northeast China. Applied Soil Ecology, 113, 11–21. https://doi.org/10.1016/j.apsoil.2017.01.007

Yoshitake, S., Soutome, H., & Koizumi, H. (2014). Deposition and decomposition of cattle dung and its impact on soil properties and plant growth in a cool-temperate pasture. Ecological Research, 29(4), 673–684. https://doi.org/10.1007/s11284-014-1153-2

Yuan, H., Lu, T., Wang, Y., Huang, H., & Chen, Y. (2014). Influence of pyrolysis temperature and holding time on properties of biochar derived from medicinal herb

(radix isatidis) residue and its effect on soil CO2 emission. Journal of Analytical and Applied Pyrolysis, 110, 277–284. https://doi.org/10.1016/j.jaap.2014.09.016

Zeng, X., Xiao, Z., Zhang, G., Wang, A., Li, Z., Liu, Y., Wang, H., Zeng, Q., Liang, Y., & Zou, D. (2018). Speciation and bioavailability of heavy metals in pyrolytic biochar of swine and goat manures. Journal of Analytical and Applied Pyrolysis, 132, 82–93. https://doi.org/10.1016/j.jaap.2018.03.012

Zhang, B., Tian, H., Lu, C., Dangal, S. R. S., Yang, J., & Pan, S. (2017). Global manure nitrogen production and application in cropland during 1860–2014: A 5 arcmin gridded global dataset for Earth system modeling. Earth System Science Data, 9(2), 667–678. https://doi.org/10.5194/essd-9-667-2017

Zhang, C., Zeng, G., Huang, D., Lai, C., Chen, M., Cheng, M., Tang, W., Tang, L., Dong, H., Huang, B., Tan, X., & Wang, R. (2019). Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts. Chemical Engineering Journal, 373, 902–922. https://doi.org/10.1016/j.cej.2019.05.139

Zhang, J., Huang, Y., Lin, J., Chen, X., Li, C., & Zhang, J. (2020). Biochar applied to consolidated land increased the quality of an acid surface soil and tobacco crop in Southern China. Journal of Soils and Sediments, 20(8), 3091–3102. https://doi.org/10.1007/s11368-019-02531-z

Zhang, M., Riaz, M., Zhang, L., El-desouki, Z., & Jiang, C. (2019). Biochar Induces Changes to Basic Soil Properties and Bacterial Communities of Different Soils to Varying Degrees at 25 mm Rainfall: More Effective on Acidic Soils. Frontiers in Microbiology, 10. https://www.frontiersin.org/article/10.3389/fmicb.2019.01321

Zhang, Q., Dijkstra, F. A., Liu, X., Wang, Y., Huang, J., & Lu, N. (2014). Effects of Biochar on Soil Microbial Biomass after Four Years of Consecutive Application in the North China Plain. PLoS ONE, 9(7), e102062. https://doi.org/10.1371/journal.pone.0102062

Zhang, Q., Zou, D., Zeng, X., Li, L., Wang, A., Liu, F., Wang, H., Zeng, Q., & Xiao, Z. (2021). Effect of the direct use of biomass in agricultural soil on heavy metals __ activation or immobilization? Environmental Pollution, 272, 115989. https://doi.org/10.1016/j.envpol.2020.115989

Zhang, S., Sun, L., Wang, Y., Fan, K., Xu, Q., Li, Y., Ma, Q., Wang, J., Ren, W., & Ding, Z. (2020). Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiology, 20(1), 190. https://doi.org/10.1186/s12866-020-01871-y

Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution, 227, 98–115. https://doi.org/10.1016/j.envpol.2017.04.032

Zhu, Y., Merbold, L., Leitner, S., Xia, L., Pelster, D. E., Diaz-Pines, E., Abwanda, S., Mutuo, P. M., & Butterbach-Bahl, K. (2020). Influence of soil properties on N2O and CO2 emissions from excreta deposited on tropical pastures in Kenya. Soil Biology and Biochemistry, 140, 107636. https://doi.org/10.1016/j.soilbio.2019.107636

Zhu, Y., Merbold, L., Pelster, D., Diaz-Pines, E., Wanyama, G. N., & Butterbach-Bahl, K. (2018). Effect of Dung Quantity and Quality on Greenhouse Gas Fluxes from Tropical Pastures in Kenya. Global Biogeochemical Cycles, 32(10), 1589–1604. https://doi.org/10.1029/2018GB005949

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る