リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Extracellular vesicles synchronize cellular phenotypes of differentiating cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Extracellular vesicles synchronize cellular phenotypes of differentiating cells

Minakawa, Tomohiro Matoba, Tetsuya Ishidate, Fumiyoshi Fujiwara, Takahiro K. Takehana, Sho Tabata, Yasuhiko Yamashita, Jun K. 京都大学 DOI:10.1002/jev2.12147

2021.09

概要

During embryonic development, cells differentiate in a coordinated manner, aligning their fate decisions and differentiation stages with those of surrounding cells. However, little is known about the mechanisms that regulate this synchrony. Here we show that cells in close proximity synchronize their differentiation stages and cellular phenotypes with each other via extracellular vesicle (EV)-mediated cellular communication. We previously established a mouse embryonic stem cell (ESC) line harbouring an inducible constitutively active protein kinase A (CA-PKA) gene and found that the ESCs rapidly differentiated into mesoderm after PKA activation. In the present study, we performed a co-culture of Control-ESCs and PKA-ESCs, finding that both ESC types rapidly differentiated in synchrony even when PKA was activated only in PKA-ESCs, a phenomenon we named ‘Phenotypic Synchrony of Cells (PSyC)’. We further demonstrated PSyC was mediated by EVs containing miR-132. PKA-ESC-derived EVs and miR-132-containing artificial nano-vesicles similarly enhanced mesoderm and cardiomyocyte differentiation in ESCs and ex vivo embryos, respectively. PSyC is a new form of cell-cell communication mediated by the EV regulation of neighbouring cells and could be broadly involved in tissue development and homeostasis.

この論文で使われている画像

参考文献

Arnold, S. J., & Robertson, E. J. (2009). Making a commitment: Cell lineage allocation and axis patterning in the early mouse embryo. Nature Reviews Molecular

Cell Biology , 91–103.

Bedzhov, I., Leung, C., Bialecka, M., & Zernicka-Goetz, M. (2014). In vitro culture of mouse blastocysts beyond the implantation stages. Nature Protocols, ,

2732–2739.

Chevillet, J. R., Kang, Q., Ruf, I. K., Briggs, H. A., Vojtech, L. N., Hughes, S. M., Cheng, H. H., Arroyo, J. D., Meredith, E. K., Gallichotte, E. N., PogosovaAgadjanyan, E. L., Morrissey, C., Stirewalt, D. L., Hladik, F., Yu, E. Y., Higano, C. S., & Tewari, M. (2014). Quantitative and stoichiometric analysis of the

microRNA content of exosomes. Proceedings National Academy of Science USA , 14888–14893.

Crewe, C., Joffin, N., Rutkowski, J. M., Kim, M., Zhang, F., Towler, D. A., Gordillo, R., & Scherer, P. (2018). An endothelial-to-adipocyte extracellular vesicle axis

governed by metabolic state. Cell , 695–708.

Dang, L. T. H., Lawson, N. D., & Fish, J. E. (2013). MicroRNA control of vascular endothelial growth factor signaling output during vascular development.

Arteriosclerosis, Thrombosis, and Vascular Biology , 193–200.

Ding, Q., Gros, R., Gray, I. D., Taussig, R., Ferguson, S. S. G., & Feldman, R. D. (2004). Raf kinase activation of adenylyl cyclases: Isoform-selective regulation.

Molecular Pharmacology , 921–928.

Era, T., & Witte, O. (2000). Regulated expression of P210 Bcr-Abl during embryonic stem cell differentiation stimulates multipotential progenitor expansion and

myeloid cell fate. Proceedings of the National Academy of Sciences of the United States of America , 1737–1742.

Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature , 154–156.

Gu, X., Su, X., Jia, C., Lin, L., Liu, S., Zhang, P., Wang, X., & Jiang, X. (2019). Sprouty1 regulates neuritogenesis and survival of cortical neurons. Journal of Cellular

Physiology , 12847–12864.

Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and molecular life sciences : CMLS , 193–208.

Hur, Y. H., Feng, S., Wilson, K. F., Cerione, R. A., & Antonyak, M. A. (2021). Embryonic stem cell-derived extracellular vesicles maintain ESC stemness by

activating FAK. Developmental Cell , 277–291.

Kataoka, H., Hayashi, M., Nakagawa, R., Tanaka, Y., Izumi, N., Nishikawa, S., Jakt, M. L., Tarui, H., & Nishikawa, S. I. (2011). Etv2 /ER71 induces vascular

mesoderm from Flk1+ PDGFRα+ primitive mesoderm. Blood , 6975–6986.

Kataoka, H., Takaura, N., Nishikawa, S., Tsuchida, K., Kodama, H., Kunisada, T., Risau, W., Kita, T., & Nishikawa, S. I. (1997). Expressions of PDGF receptor

alpha, c-Kit and Flk1 genes clustering in mouse chromosome 5 define distinct subsets of nascent mesodermal cells. Development, Growth & Differentiation

, 729–740.

Kawashima, Y., Yamamoto, H., Takeuchi, H., Hino, T., & Niwa, T. (1998). Properties of a peptide containing DL-lactide/glycolide copolymer nanospheres prepared

by novel emulsion solvent diffusion methods. European Journal of Pharmaceutics and Biopharmaceutics , 41–48.

Lei, Z., Mil, A. V., Brandt, M. M., Grundmann, S., Hoefer, I., Smits, M., Azzouzi, H. E., Fukao, T., Cheng, C., Doevendans, P. A., & Sluijter, J. P. (2015). MicroRNA132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway. Journal of Cellular and Molecular Medicine

, 1994–2005.

Lin, L., Chiu, S., Wu, M., Chen, P., & Yen, J. (2012). Luteolin induces microRNA-132 expression and modulates neurite outgrowth in PC12 cells. Plos One ,

e43304.

Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings

of the National Academy of Sciences of the United States of America , 7634–7638.

Mebratu, Y., & Tesfaigzi, Y. (2009). How ERK1/2 activation controls cell proliferation and cell death is subcellular localization the answer ? Cell Cycle , 1168–1175.

Meldolesi, J. (2018). Exosomes and ectosomes in intercellular communication. Current Biology , R435–R444.

Minakawa, T., Kanki, Y., Nakamura, K.&, Yamashita, J. K. (2020). Protein kinase A accelerates the rate of early stage differentiation of pluripotent stem cells.

Biochemical and Biophysical Research Communications , 57–63.

Murata, Y., Jo, J. I., & Tabata, Y. (2021). Molecular beacon imaging to visualize Ki67 mRNA for cell proliferation ability. Tissue Engineering. Part A , 526–535.

Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N., & Lu, Q. (2012). Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs)

at plasma membrane by recruitment of TSG101 protein. Proceedings of the National Academy of Sciences of the United States of America , 4146–4151.

Rasmussen, T. L., Shi, X., Wallis, A., Kweon, J., Zirbes, K. M., Koyano-Nakagawa, N., & Garry, D. J. (2012). VEGF /Flk1 signaling cascade transactivates Etv2 gene

expression. Plos One , e50103.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

MINAKAWA et al.

 of 

Record, M., Silvente-Poirot, S., Poirot, M., & Wakelam, M. J. O. (2018). Extracellular vesicles: Lipids as key components of their biogenesis and functions. Journal

of Lipid Research , 1316–1324.

Riva, P., Battaglia, C., & Venturin, M. (2019). Emerging role of genetic alterations affecting exosome biology in neurodegenerative diseases. International Journal

of Molecular Sciences , 4113.

Sassone-corsi, P. (2012). The cyclic AMP pathway. Cold Spring Harbor perspectives in biology , a011148.

Stoffel, W., Jenke, B., Blöck, B., Zumbansen, M., & Koebke, J. (2005). Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development.

Proceedings of the National Academy of Sciences of the United States of America , 4554–4559.

Thomson, J. A., Itskovits-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergial, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from

human blastocysts. Science , 1145–1148.

van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology , 213–228.

Wagner, K. U., Krempler, A., Qi, Y., Park, K., Henry, M. D., Triplett, A. A., Riedlinger, G., Rucker, E. B. III, & Hennighausen, L. (2003). Tsg101 is essential for cell

growth, proliferation, and cell survival of embryonic and adult tissues. Molecular and Cellular Biology , 150–162.

Wang, H., Xu, J., Lazarovici, P., Quirion, R., & Zheng, W. (2018). cAMP response element-binding protein (CREB): A possible signaling molecule link in the

pathophysiology of schizophrenia. Frontiers in molecular neuroscience , 255.

Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hämäläinen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., Kaji, K., Sung, H. K., &

Nagy, A. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature , 766–770.

Yamamizu, K., Kawasaki, K., Katayama, S., Watabe, T., & Yamashita, J. K. (2009). Enhancement of vascular progenitor potential by protein kinase A through

dual induction of Flk-1 and Neuropilin-1. Blood , 3707–3716.

Yamashita, J., Itoh, H., Hirashima, M., Ogawa, M., Nishikawa, S., Yurugi, T., Naito, M., Nakao, K., & Nishikawa, S. (2000). Flk1-positive cells derived from

embryonic stem cells serve as vascular progenitors. Nature , 92–96.

Yáñez-Mó, M., Sijander, P. R-M., Andreu, Z., Zavec, A. B., Borràs, F. E., Buzas, E. I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., Colás, E., Cordeiro-da Silva,

A., Fais, S., Falcon-Perez, J. M., Ghobrial, I. M., Giebel, B., Gimona, M., Graner, M., Gursel, I.…De Wever, O. (2015). Biological properties of extracellular

vesicles and their physiological functions. Journal of extracellular vesicles , 27066.

Yurugi-Konayashi, T., Itoh, H., Schroeder, T., Nakano, A., Narazaki, G., Kita, F., Yanagi, K., Hiraoka-Kanie, M., Inoue, E., Ara, T., Nagasawa, T., Just, U., Nakao,

K., Nishikawa, S., & Yamashita, J. K. (2006). Adrenomedullin/cyclic AMP pathway induces Notch activation and differentiation of arterial endothelial cells

from vascular progenitors. Arteriosclerosis, Thrombosis, and Vascular Biology , 1977–1984.

Zhang, Y., Liu, Y., Liu, H., & Tang, W. H. (2019). Exosomes: Biogenesis, biologic function and clinical potential. Cell & bioscience : 19.

S U P P O R T I N G I N F O R M AT I O N

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Minakawa, T., Matoba, T., Ishidate, F., Fujiwara, T. K., Takehana, S., Tabata, Y., & Yamashita, J.

K. (2021). Extracellular vesicles synchronize cellular phenotypes of differentiating cells. Journal of Extracellular Vesicles,

, e12147. https://doi.org/10.1002/jev2.12147

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る