リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tolerance and Acclimation of the Leaves of Nine Urban Tree Species to High Temperatures」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tolerance and Acclimation of the Leaves of Nine Urban Tree Species to High Temperatures

Okubo, Nao Inoue, Sumihiro Ishii, H. Roaki 神戸大学

2023.08

概要

To prepare and manage urban greenspace for a hotter future, we must select trees that can tolerate or acclimate to high temperatures. Here, we compared tolerance and acclimation to high temperatures among nine urban tree species in Japan. Saplings were exposed to heat from different times (early and mid-summer) during the growing season in a greenhouse. With the exception of Ginko, heating in early summer did not affect whole-tree health, suggesting that most urban tree species may be able to acclimate to higher temperatures during the early growing season. However, continued exposure to higher temperatures, as well as heating from mid-summer, had negative effects on tree health, leading to wilting/browning, especially for evergreen broadleaved species whose leaves mature slowly. Cornus florida, Styrax japonicus and Morella rubra were the most vulnerable to heating, such that all heated saplings had died by the end of summer. At the leaf level, leaf maturation of the deciduous species and Morella was negatively affected by heating, whereas that of Eurya emarginata and Euonymus japonicas were not affected. These two species also showed heat tolerance, having a higher T₅₀ (temperature where leaf quantum yield declined to 50% of maximum value due to heat stress) compared to other species, as well as heat acclimation, where T₅₀ was higher for the heated saplings compared to the control. Our results indicate that, while some species that cannot recover from heat damage in early summer could die, others can acclimate to sustained high temperatures, as well as to late summer heat. As heatwaves are expected to become more frequent and severe due to global warming, tree species need to be screened individually to assess their ability to tolerate or acclimate to high temperature.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present.

Science 2001, 292, 686–693. [CrossRef]

Visser, M.E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B Biol. Sci. 2008,

275, 649–659.

Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.;

Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature 2013, 3,

292–297. [CrossRef]

McDowell, N.; Allen, C.D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Chang. 2015, 5,

669–672. [CrossRef]

Carnicer, J.; Coll, M.; Ninyerola, M.; Pons, X.; Sánchez, G.; Peñuelas, J. Widespread crown condition decline, food web disruption,

and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. USA 2011, 108, 1474–1478.

[CrossRef] [PubMed]

Jump, A.S.; Penuelas, J. Running to stand still: Adaptation and the response of plants to rapid climate change. Ecol. Lett. 2005, 8,

1010–1020.

Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends

Ecol. Evol. 2007, 22, 357–365. [CrossRef]

Menzel, A.; Sparks, T.H.; Estrella, N.; Roy, D.B. Altered geographic and temporal variability in phenology in response to climate

change. Glob. Ecol. Biogeogr. 2006, 15, 498–504. [CrossRef]

Emmanuel, R.; Loconsole, A. Green infrastructure as an adaptation approach to tackling urban overheating in the Glasgow Clyde

Valley Region, UK. Landsc. Urban Plan. 2015, 138, 71–86. [CrossRef]

Forests 2023, 14, 1639

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

11 of 12

Caplan, J.S.; Galanti, R.C.; Olshevski, S.; Eisenman, S.W. Water relations of street trees in green infrastructure tree trench systems.

Urban For. Urban Green. 2019, 41, 170–178. [CrossRef]

Chen, Y.; Wang, X.; Jiang, B.; Wen, Z.; Yang, N.; Li, L. Tree survival and growth are impacted by increased surface temperature on

paved land. Landsc. Urban Plan. 2017, 162, 68–79. [CrossRef]

Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built

Environ. 2007, 33, 115–133. [CrossRef]

Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M.

Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ.

Manag. 2014, 146, 107–115. [CrossRef] [PubMed]

Norton, B.; Bosomworth, K.; Coutts, A.; WIlliams, N.; Livesley, S.; Trundle, A.; Harris, R.; McEvoy, D. Planning for a Cooler Future:

Green Infrastructure to Reduce Urban Heat; Victorian Centre for Climate Change Adaptation Research: Melbourne, Australia, 2013.

Nitschke, C.R.; Nichols, S.; Allen, K.; Dobbs, C.; Livesley, S.J.; Baker, P.J.; Lynch, Y. The influence of climate and drought on urban

tree growth in southeast Australia and the implications for future growth under climate change. Landsc. Urban Plan. 2017, 167,

275–287. [CrossRef]

Cunningham, S.; Read, J. Comparison of temperate and tropical rainforest tree species: Photosynthetic responses to growth

temperature. Oecologia 2002, 133, 112–119. [CrossRef]

Perez, T.M.; Stroud, J.T.; Feeley, K.J. Themal trouble in the tropics. Science 2016, 351, 1392–1393. [CrossRef]

Roy, S.; Davison, A.; Östberg, J. Pragmatic factors outweigh ecosystem service goals in street tree selection and planting in

South-East Queensland cities. Urban For. Urban Green. 2017, 21, 166–174. [CrossRef]

Yamaguchi, D.P.; Nakaji, T.; Hiura, T.; Hikosaka, K. Effects ofseasonal change and experimental warming on the temperaturedependence of photosynthesis in the canopy leaves of Quercus serrata. Tree Physiol. 2016, 36, 1283–1295. [CrossRef]

Kumarathunge, D.P.; Medlyn, B.E.; Drake, J.E.; Tjoelker, M.G. Acclimation and adaptation components of the temperature

dependence of plant photosynthesis at the global scale. New Phytol. 2019, 222, 768–784. [CrossRef]

Crous, K.Y.; Uddling, J.; De Kauwe, M.G. Temperature responses of photosynthesis and respiration in evergreen trees from boreal

to tropical latitudes. New Phytol. 2022, 234, 353–374. [CrossRef]

Esperon-Rodriguez, M.; Rymer, P.D.; Power, S.A.; Challis, A.; Marchin, R.M.; Tjoelker, M.G. Functional adaptations and trait

plasticity ofurban trees along a climatic gradient. Urban For. Urban Green. 2020, 54, 126771. [CrossRef]

Carter, K.R.; Wood, T.E.; Reed, S.C.; Schwartz, E.C.; Reinsel, M.B.; Yang, X.; Cavaleri, M.A. Photosynthetic and respiratory

acclimation of understory shrubs in response to in situ experimental warming of a wet tropical forest. Front. For. Glob. Chang.

2020, 3, 576320. [CrossRef]

Doughty, C.E. An in situ leaf and branch warming experiment in the Amazon. Biotropica 2011, 43, 658–665. [CrossRef]

Slot, M.; Rey-Sánchez, C.; Gerber, S.; Lichstein, J.W.; Winter, K.; Kitajima, K. Thermal acclimation of leaf respiration of tropical

trees and lianas: Response to experimental canopy warming, and consequences for tropical forest carbon balance. Glob. Chang.

Biol. 2014, 20, 2915–2926. [CrossRef] [PubMed]

Carter, K.R.; Cavaleri, M.A. Within-canopy experimental leaf warming induces photosynthetic decline instead of acclimation in

two northern hardwood species. Front. For. Glob. Chang. 2018, 1, 11. [CrossRef]

Reich, P.B.; Sendall, K.M.; Stefanski, A.; Wei, X.; Rich, R.L.; Montgomery, R.A. Boreal and temperate trees show strong acclimation

of respiration to warming. Nature 2016, 531, 633–636. [CrossRef] [PubMed]

Gunderson, C.A.; Norby, R.J.; Wullschleger, S.D. Acclimation of photosynthesis and respiration to simulated climatic warming in

northern and southern populations of Acer saccharum: Laboratory and field evidence. Tree Physiol. 2000, 20, 87–96. [CrossRef]

Slot, M.; Krause, G.H.; Krause, B.; Hernández, G.G.; Winter, K. Photosynthetic heat tolerance of shade and sun leaves of three

tropical tree species. Photosynth. Res. 2019, 141, 119–130. [CrossRef]

Yamori, W.; Hikosaka, K.; Way, D.A. Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation

and temperature adaptation. Photosynth. Res. 2014, 119, 101–117. [CrossRef] [PubMed]

Sage, R.F.; Kubien, D.S. The temperature response of C3 and C4 photosynthesis. Plant, Cell & Environment. Plant Cell Environ.

2007, 30, 1086–1106. [PubMed]

Hikosaka, K.; Ishikawa, K.; Borjigidai, A.; Muller, O.; Onoda, Y. Temperature acclimation of photosynthesis: Mechanisms involved

in the changes in temperature dependence of photosynthetic rate. J. Exp. Bot. 2006, 57, 291–302. [CrossRef] [PubMed]

Pallardy, S.G. Physiology of Woody Plants, 3rd ed.; Academic Press: San Diego, CA, USA, 2008; p. 464.

Pataki, D.E.; McCarthy, H.R.; Livtak, E.; Pincetl, S. Transpiration of urban forests in the Los Angeles metropolitan area. Ecol. Appl.

2011, 21, 661–677. [CrossRef] [PubMed]

Cunningham, S.C.; Read, J. Foliar temperature tolerance of temperate and tropical evergreen rain forest trees of Australia. Tree

Physiol. 2006, 26, 1435–1443. [CrossRef]

McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al.

Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?

New Phytol. 2008, 178, 719. [CrossRef] [PubMed]

Sevanto, S.; McDowell, N.; Dickman, L.T.; Pangle, R.; Pockman, W. How do trees die? A test of the hydraulic failure and carbon

starvation hypotheses. Plant Cell Environ. 2014, 37, 153–161. [CrossRef]

Forests 2023, 14, 1639

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

12 of 12

Slot, M.; Kitajima, K. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types.

Oecologia 2015, 177, 885–900. [CrossRef]

Lombardozzi, D.L.; Bonan, G.B.; Smith, N.G.; Dukes, J.S.; Fisher, R.A. Temperature acclimation of photosynthesis and respiration:

A key uncertainty in the carbon cycle–climate feedback. Geophys. Res. Lett. 2015, 42, 8624–8631. [CrossRef]

Dusenge, M.E.; Duarte, A.G.; Way, D.A. Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on

photosynthesis, photorespiration and respiration. New Phytol. 2019, 221, 32–49.

O’Sullivan, O.S.; Heskel, M.A.; Reich, P.B.; Tjoelker, M.G.; Weerasinghe, L.K.; Penillard, A.; Zhu, L.; Egerton, J.J.G.; Bloomfield,

K.J.; Creek, D.; et al. Thermal limits of leaf metabolism across biomes. Glob. Chang. Biol. 2017, 23, 209–223. [CrossRef]

Drake, J.E.; Tjoelker, M.G.; Vårhammar, A.; Medlyn, B.E.; Reich, P.B.; Leigh, A.; Pfautsch, S.; Blackman, C.J.; López, R.; Aspinwall,

M.J.; et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob.

Chang. Biol. 2018, 24, 2390–2402. [CrossRef]

Hara, C.; Inoue, S.; Ishii, H.R.; Okabe, M.; Nakagaki, M.; Kobayashi, H. Tolerance and acclimation of photosynthesis of nine

urban tree species to warmer growing conditions. Trees 2021, 35, 1793–1806. [CrossRef]

Ishii, H.; Ohsugi, Y. Light acclimation potential and carry-over effects vary among three evergreen tree species with contrasting

patterns of leaf emergence and maturation. Tree Physiol. 2011, 31, 819–830. [CrossRef]

Law, R.; Crafts-Brandner, S.J. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of

ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol. 1999, 120, 173–182. [CrossRef] [PubMed]

Sharkey, T.D. Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive

oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ. 2005, 28, 269–277. [CrossRef]

Colombo, S.; Timmer, R. Limits of tolerance to high temperatures causing direct and indirect damage to black spruce. Tree Physiol.

1992, 11, 95–104. [CrossRef]

Kunert, N.; Hajek, P.; Hietz, P.; Morris, H.; Rosner, S.; Tholen, D. Summer temperatures reach the thermal tolerance threshold of

photosynthetic decline in temperate conifers. Plant Biol. 2022, 24, 1254–1261. [CrossRef]

Krause, G.H.; Winter, K.; Krause, B.; Jahns, P.; Garcia, M.; Aranda, J.; Virgo, A. High-temperature tolerance of a tropical tree, Ficus

insipida: Methodological reassessment and climate change considerations. Funct. Plant Biol. 2010, 37, 890–900. [CrossRef]

Araki, M.G.; Gyokusen, K.; Kajimoto, T. Vertical and seasonal variations in temperature responses of leaf respiration in a

Chamaecyparis obtusa canopy. Tree Physiol. 2017, 37, 1269–1284. [CrossRef]

Atkin, O.K.; Tjoelker, M.G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci.

2003, 8, 343–351. [CrossRef]

Way, D.A.; Yamori, W. Thermal acclimation of photosynthesis: On the importance of adjusting our definitions and accounting for

thermal acclimation of respiration. Photosynth. Res. 2014, 119, 89–100. [CrossRef]

Cheesman, A.W.; Winter, K. Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in

tropical tree seedlings. J. Exp. Bot. 2013, 64, 3817–3828. [CrossRef]

Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol.

Appl. 2007, 17, 2145–2151. [CrossRef] [PubMed]

Estoque, R.C.; Murayama, Y. Monitoring surface urban heat islandformation in a tropical mountain city using Landsat data

(1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [CrossRef]

Youngsteadt, E.; Dale, A.G.; Terando, A.J.; Dunn, R.R.; Frank, S.D. Do cities simulate climate change? A comparison of herbivore

response to urban and global warming. Glob. Chang. Biol. 2015, 21, 97–105. [CrossRef]

Crous, K.Y. Plant responses to climate warming: Physiological adjustments and implications for plant functioning in a future,

wamer world. Am. J. Bot. 2019, 106, 1049–1051. [CrossRef]

Kullberg, A.T.; Slot, M.; Feeley, K.J. Thermal optimum of photosynthesis is controlled by stomatal conductance and does not

acclimate across an urban thermal gradient in six subtropical tree species. Plant Cell Environ. 2023, 46, 831–849. [CrossRef]

[PubMed]

Cook, A.M.; Berry, N.; Milner, K.V.; Leigh, A. Water availability influences thermal safety margins for leaves. Funct. Ecol. 2021, 35,

2179–2189. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る