リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Alteration of fecal microbiota by fucoxanthin results in prevention of colorectal cancer in AOM/DSS mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Alteration of fecal microbiota by fucoxanthin results in prevention of colorectal cancer in AOM/DSS mice

Terasaki Masaru Uehara Osamu Ogasa Shinya Sano Taishi Kubota Atsuhiko Kojima Hiroyuki Tanaka Takuji Maeda Hayato Miyashita Kazuo Mutoh Michihiro 帯広畜産大学

2022.11.01

概要

Fucoxanthin (Fx), a marine carotenoid found in edible brown algae, is well known for having anticancer properties. The gut microbiota has been demonstrated as a hallmark for colorectal cancer progression in both humans and rodents. However, it remains unclear whether the gut microbiota is associated with the anticancer effect of Fx. We investigated the chemopreventive potency of Fx and its effect on gut microbiota in a mouse model of inflammation-associated colorectal cancer (by azoxymethane/dextran sulfate sodium treatment). Fx administration (30 mg/kg bw) during a 14 week period significantly inhibited the multiplicity of colorectal adenocarcinoma in mice. The number of apoptosis-like cleaved caspase-3high cells increased significantly in both colonic adenocarcinoma and mucosal crypts. Fx administration significantly suppressed Bacteroidlales (f_uc; g_uc) (0.3-fold) and Rikenellaceae (g_uc) (0.6-fold) and increased Lachnospiraceae (g_uc) (2.2-fold), compared with those of control mice. Oral administration of a fecal suspension obtained from Fx-treated mice, aimed to enhance Lachnospiraceae, suppress the number of colorectal adenocarcinomas in azoxymethane/dextran sulfate sodium-treated mice with a successful increase in Lachnospiraceae in the gut. Our findings suggested that an alteration in gut microbiota by dietary Fx might be an essential factor in the cancer chemopreventive effect of Fx in azoxymethane/dextran sulfate sodium-treated mice.

参考文献

1. Bray, F. et al. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 68, 394-424. [DOI: 10.3322/caac.21492]

2. Cancer Genome Atlas Network. (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487, 330-337. [DOI: 10.1038/nature11252]

3. O’Keefe, S.J. (2016) Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol., 13, 691-706. [DOI: 10.1038/nrgastro.2016.165]

4. Garrett, W.S. (2019) The gut microbiota and colon cancer. Science, 364, 1133-1135. [DOI: 10.1126/science.aaw2367]

5. Gagnière, J. et al. (2016) Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol., 22, 501-518. [DOI: 10.3748/wjg.v22.i2.501]

6. Milani, A. et al. (2017) Carotenoids: biochemistry, pharmacology and treatment. Br. J. Pharmacol., 174, 1290-1324. [DOI: 10.1111/bph.13625]

7. Al-Ishaq, R.K. et al. (2020) Phytochemicals and gastrointestinal cancer: cellular mechanisms and effects to change cancer progression. Biomolecules, 10, E105. [DOI: 10.3390/biom10010105]

8. Wu, S. et al. (2019) Carotenoid intake and circulating carotenoids are inversely associated with the risk of bladder cancer: a dose-response meta-analysis. Adv. Nutr., 11, 630-643. [DOI: 10.1093/advances/nmz120]

9. Djuric, Z. et al. (2018) Colonic mucosal bacteria are associated with inter-individual variability in serum carotenoid concentrations. J. Acad. Nutr. Diet, 118, 606-616.e3. [DOI: 10.1016/j.jand.2017.09.013]

10. Molan, A.L. et al. (2014) Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytother. Res., 28, 416-422. [DOI: 10.1002/ptr.5009]

11. Hitoe, S. et al. (2017) Seaweed fucoxanthin supplementation improves obesity parameters in mild obese Japanese subjects. Func. Foods Health Disease, 7, 246-262. [10.31989/ffhd.v7i4.333]

12. Mikami, N. et al. (2017) Reduction of HbA1c levels by fucoxanthin-enriched akamoku oil possibly involves the thrifty allele of uncoupling protein 1 (UCP1): a randomised controlled trial in normal-weight and obese Japanese adults. J. Nutr. Sci., 6, e5. [DOI: 10.1017/jns.2017.1]

13. Abar, L. et al. (2018) Height and body fatness and colorectal cancer risk: an update of the WCRF-AICR systematic review of published prospective studies. Eur. J. Nutr., 57, 1701-1720. [DOI: 10.1007/s00394-017-1557-1]

14. Jonasson, J.M. et al. (2014) Excess body weight and cancer risk in patients with type 2 diabetes who were registered in Swedish national diabetes register – register-based cohort study in Sweden. PLos One, 9, e105868. [DOI: 10.1371/journal.pone.0105868]

15. Beppu, F. et al. (2009) Single and repeated oral dose toxicity study of fucoxanthin (Fx), a marine carotenoid, in mice. J. Toxicol. Sci., 34, 501-510. [DOI: 10.2131/jts.34.501]

16. Iio, K. et al. (2011) Single and 13-week oral toxicity study of fucoxanthin oil from microalgae in rats. Sokuhin Eiseigaku Zasshi, 52, 183-189. [DOI: 10.3358/shokueishi.52.183]

17. Nishino, H. et al. (2009) Cancer prevention by carotenoids. Arch. Biochem. Biophys., 483, 165-168. [DOI: 10.1016/j.abb.2008.09.011]

18. Terasaki, M. et al. (2019) Salivary glycine is a significant predictor for the attenuation of polyp and tumor microenvironment formation by fucoxanthin in AOM/DSS mice. IN VIVO, 33, 365-374. [DOI: 10.21873/invivo.11483]

19. Terasaki, M. et al. (2020) Dietary fucoxanthin induces anoikis in colorectal adenocarcinoma by suppressing integrin signaling in a murine colorectal cancer model. J. Clin. Med., 9, 90-104. [DOI: 10.3390/jcm9010090]

20. Lyu, Y. et al. (2018) Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. Exp. Biol. Med. (Maywood), 243, 613-620. [DOI: 10.1177/1535370218763760]

21. Molan, A.L. et al. (2010) The ability of blackcurrant extracts to positively modulate key markers of gastrointestinal function in rats. World J. Microbiol. Biotechnol., 26, 1735-1743. [DOI: 10.1007/s11274-010-0352-4]

22. Ashktorab, H. et al. (2019) Saffron: the golden spice with therapeutic properties on digestive diseases. Nutrients, 11, E943. [DOI: 10.3390/nu11050943]

23. Guo, B. et al. (2019) Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food Funct., 10, 5644-5655. [DOI: 10.1039/c9fo01018a]

24. Xia, H. et al. (2018) Dietary tomato powder inhibits high-fat diet-promoted hepatocellular carcinoma with alteration of gut microbiota in mice lacking carotenoid cleavage enzymes. Cancer Prev. Res. (Phila), 11, 797-810. [DOI: 10.1158/1940-6207.CAPR-18-0188]

25. Suzuki, R. et al. (2006) Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis, 27, 162-169. [DOI: 10.1093/carcin/bgi205]

26. Farhana, L. et al. (2018) Gut microbiome profiling and colorectal cancer in African Americans and Caucasian Americans. World J. Gastrointest. Pathophysiol., 9, 47-58. [DOI: 10.4291/wjgp.v9.i2.47]

27. Hibberd, A.A. et al. (2017) Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol., 4, e000145. [DOI: 10.1136/bmjgast-2017-000145]

28. Louis, P. et al. (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol., 19, 29-41. [DOI: 10.1111/1462-2920.13589]

29. Hague, A. et al. (1996) The role of butyrate in human colonic epithelial cells: an energy source or inducer of differentiation and apoptosis?, Proc. Nutr. Soc., 55, 937-943. [DOI: 10.1079/pns19960090]

30. Nordgaard, I. et al. (1996) Colonic production of butyrate in patients with previous colonic cancer during long-term treatment with dietary fibre (Plantago ovata seeds). Scand. J. Gastroenterol., 31, 1011-1020. [DOI: 10.3109/00365529609003122]

31. Meehan, C.J. et al. (2014) A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol. Evol., 6, 703-713. [DOI: 10.1093/gbe/evu050]

32. Wu, M. et al. (2016) Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget, 7, 85318-85331. [DOI: 10.18632/oncotarget.13347]

33. Zhang, H. et al. (2019) Canmei formula reduces colitis-associated colorectal carcinogenesis in mice by modulating the composition of gut microbiota. Front. Oncol., 9, 1149. [DOI: 10.3389/fonc.2019.01149]

34. Jiang, F. et al. (2020) Wu Mei Wan attenuates CAC by regulating gut microbiota and the NF-κB/IL6-STAT3 signaling pathway. Biomed. Pharmacother., 125, 109982. [DOI: 10.1016/j.biopha.2020.109982]

35. Li, Y. et al. (2012) Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis, 33, 1231-1238. [DOI: 10.1093/carcin/bgs137]

36. Andrews, M.C. et al. (2018) Concepts collide: genomic, immune, and microbial influences on the tumor microenvironment and response to cancer therapy. Front Immunol., 9, 946-961. [DOI: 10.3389/fimmu.2018.00946]

37. Kostic, A.D. et al. (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe, 14, 207-215. [DOI: 10.1016/j.chom.2013.07.007]

38. Wu, X. et al. (2019) Microbiota transplantation: targeting cancer treatment. Cancer Lett., 452, 144-151. [DOI: 10.1016/j.canlet.2019.03.010]

39. Bakken, J.S. et al. (2011) Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol., 9, 1044-1049. [DOI: 10.1016/j.cgh.2011.08.014]

40. Wong, S.H. et al. (2017) Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterol., 153, 1621-1633.e6. [DOI: 10.1053/j.gastro.2017.08.022]

41. Li, L. et al. (2019) Gut microbiota from colorectal cancer patients enhances the progression of intestinal adenoma in ApcMin/+ mice. EBioMedicine, 48, 301-315. [DOI: 10.1016/j.ebiom.2019.09.021]

42. Wang, Z. et al. (2019) Prospective role of fecal microbiota transplantation on colitis and colitis-associated colon cancer in mice is associated with Treg cells. Front Microbiol., 10, 2498. [DOI: 10.3389/fmicb.2019.02498]

43. Chen, L. et al. (2017) NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat. Immunol., 18, 541-551. [DOI: 10.1038/ni.3690]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る