リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on Metabolism and Functional Role of Dietary Phospholipids in the Digestive System」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on Metabolism and Functional Role of Dietary Phospholipids in the Digestive System

Ephantus Nguma BERNARD 帯広畜産大学

2021.06.10

概要

Introduction: Ethanolamine glycerophospholipid (EtnGpl) is a major subclass of glycerophospholipid in biological membranes and exists in three forms (alkenyl, alkyl, and acyl). The alkenyl form is referred to as ethanolamine plasmalogen (PlsEtn) and has a unique property of a vinyl ether linkage at the sn-1 position of the glycerol moiety. PlsEtn are critical for human health and have established roles such as reservoirs of second messengers , involved in membrane fusion , ion transport , cholesterol efflux, neuronal development, and as endogenous antioxidants. Dysregulation of PlsEtn or low levels have been associated with several diseases such as Zellweger syndrome spectrum disorders , Alzheimer’s disease, cardiovascular disease, and certain forms of cancer. In the recent past many researcher are interested in the health benefits of PlsEtn ; however , despite of the above-mentioned functional roles, biological functions and the underlying mechanistic bases of dietary PlsEtn in colonic health are not well defined . Currently , the incidence if inflammatory bowel disease (IBD) and colon cancer are on the rise, globally. It is generally recognized that patients with IBD have significant increased risk of developing colon cancer primarily a result of chronic intestinal inflammation. Therefore, the main objective of my PhD study was to elucidate the functional role and metabolism of dietary PlsEtn during intestinal inflammation-related disorders using suitable in vivo and in vitro experimental models.

 In the first study (Chapter 2), I used 1,2-dimethyhydrazine (DMH) carcinogen to induce aberrant crypt foci (ACF) formation in the colon of mice. In this study, I hypothesized that dietary PlsEtn may suppress colon inflammatory stress and subsequent formation of colon precancerous lesions (aberrant crypt foci - ACF) due to the abundance of vinyl ether linkages at the sn-1 position. Therefore, I investigated the effect of diets containing 0.1% purified EtnGpl from ascidian muscle with high PlsEtn (87.3 mol%) and from porcine liver with low PlsEtn (7.2 mol%) levels and consisting of relatively same n-3/n-6 ratio by supplementing with 1% fish oil on the formation of ACF using DMH-induced colon carcinogenesis mice model. Results and conclusion: Dietary EtnGpl suppressed DMH-induced aberrant crypt with one foci (AC 1) and total ACF formation (P < 0.05). ACF suppression by dietary ascidian muscle EtnGpl was higher compared with dietary porcine liver EtnGpl . Additionally , dietary EtnGpl decreased DMH -induced oxidative damage , overproduction of TNF-α, and expression of apoptosis -related proteins in the colon mucosa. The effect of dietary ascidian muscle EtnGpl showed superiority compared with dietary porcine liver EtnGpl. Our results demonstrate the mechanisms by which dietary PlsEtn suppresses ACF formation and apoptosis. Dietary PlsEtn attained this suppression by reducing colon inflammation and oxidative stress hence a reduction in DMH-induced intestinal impairment . These findings provide new insights about the functional role of dietary PlsEtn during colon carcinogenesis.

 In the second study (Chapter 3), I used lipopolysaccharide (LPS) to induced cell injury in differentiated Caco-2 cells. I hypothesized that extrinsic PlsEtn may inhibit apoptosis in human intestinal tract cells under LPS-induced inflammatory stress. Here, I clarified that PlsEtn with abundant vinyl ether linkages has the potential to reduce the degree of LPS-induced apoptotic cells using differentiated Caco-2 cells as an in vitro model. Results and conclusion: Lipopolysaccharide (LPS) induced apoptosis of differentiated Caco-2 cells, which was suppressed by EtnGpl in a dose-dependent manner. Cells treated with ascidian muscle EtnGpl containing high levels of PlsEtn demonstrated a lower degree of apoptosis, and downregulated TNF-α and apoptosis-related proteins compared to those treated with porcine liver EtnGpl containing low PlsEtn. This indicates PlsEtn exerted the observed effects, which provided protection against induced inflammatory stress. Overall, our results suggest PlsEtn with abundant vinyl ether linkages is potentially beneficial in preventing the initiation of inflammatory bowel disease (IBD) and colon cancer.

 In the third study, (Chapter 4), I used 1.5% dextran sulfote sodium (DSS) to induced colitis in mice colon. I hypothesized that dietary PlsEtn may suppress colon inflammatory mediators and histological damage due to the abundance of vinyl ether linkages at the sn-1 position . In this study , I investigated the effect of diets containing 0.1% purified EtnGpl from ascidian muscle with high PlsEtn (86.2 mol%) and from porcine liver with low PlsEtn (7.7 mol%) levels and consisting of relatively similar n-3/n-6 ratio by supplementing with 1% fish oil on the impairment of colon lining using dextran sulfate sodium (DSS)-induced colitis in mice. Results and conclusion: Two groups of mice received AIN-93G diet with 1% fish oil (blank and control group) and another two groups of mice receive AIN-93G diet with 1% fish oil and either high PlsEtn level (ascidian muscle group) or low PlsEtn level (porcine liver group). After 38 days, DSS treatment shortened the colon length, decreased the body weight, and increased spleen weight compared to the blank group, which were improved by dietary EtnGpl, with ascidian muscle group showing superior effects. After 16 days (early/middle stage of inflammation), DSS treatment elevated MPO activity, TBARS, pro-inflammatory cytokines and proapoptosis-related proteins levels in the colon mucosa compared to the blank, which were lowered by dietary EtnGpl with ascidian muscle group showing higher suppression. Furthermore, ascidian muscle compared to porcine liver group fed to higher levels of plasmalogens in the colon mucosa and plasma. Taken together, these results indicate that diets with abundant PlsEtn exert more anti-colitis effects by modulating apoptosis and inflammatory mediators in the colon mucosa.

 Taken together, the three studies strongly correlate the functional role of dietary PlsEtn with inhibition of chronic colon inflammation, hence the suppression of the associated IBD and colon cancer initiation. Moreover, the abundance of vinyl ether linkage showed enhanced suppression. Therefore, the findings of these studies indicate the potential of utilizing food sources rich in PlsEtn as dietary therapies for colon inflammation-related disorders such as IBD and colon cancer.

この論文で使われている画像

参考文献

Al-Abrash, A.S., Al-Quobaili, F.A., & Al-Akhras, G.N. 2000 Catalase evaluation in different human diseases associated with oxidative stess. Saudi Medical Journal, 9:826–830

Alex, P., Zachos, N., Nguyen, T., Gonzales, L., Chen, T., Conklin, L., Centola, M., & Li, X. 2009 Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflammatory Bowel Diseases, 15:341–352. https://doi.org/10.1002/ibd.20753

Ananthakrishnan, A.N. 2015 Environmental risk factors for inflammatory bowel diseases: A review. Digestive Diseases and Sciences, 60:290–298. https://doi.org/10.1007/s10620-014-3350-9

Ananthakrishnan, A.N., Khalili, H., Konijeti, G.G., Higuchi, L.M., De Silva, P., Fuchs, C.S., Willett, W.C., Richter, J.M., & Chan, A.T. 2014 Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut, 63:776–784. https://doi.org/10.1136/gutjnl-2013-305304

Andoh, A., Yagi, Y., Shioya, M., Nishida, A., Tsujikawa, T., & Fujiyama, Y. 2008 Mucosal cytokine network in inflammatory bowel disease 14:5154–5161. https://doi.org/10.3748/wjg.14.5154

Arai, K., Yamazaki, T., Tokuji, Y., Kawahara, M., Ohba, K., Hironaka, K., Kinoshita, M., & Ohnishi, M. 2013 Effects of chinese yam storage protein on formation of aberrant crypt foci in 1,2-dimethylhdrazine-treated mice. Journal of Food and Nutrition Research, 52:139–145

Axelrad, J.E., Lichtiger, S., & Yajnik, V. 2016 Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment. World Journal of Gastroenterology, 22:4794–4801. https://doi.org/10.3748/wjg.v22.i20.4794

Bartsch, H., & Nair, J. 2006 Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: Role of lipid peroxidation, DNA damage, and repair. Langenbeck’s Archives of Surgery, 391:499–510. https://doi.org/10.1007/s00423-006-0073-1

Beutler, B., Du, X., & Poltorak, A. 2001 Identification of Toll-like receptor 4 (TLR4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies. Journal of Endotoxin Research, 7:277–280

Bird, R.P. 1995 Role of aberrant crypt foci in understanding the pathogenesis of colon cancer. Cancer letters, 93:55–71. https://doi.org/10.1016/0304-3835(95)03788-X

Blander, J.M. 2016 Death in the intestinal epithelium — basic biology and implications for inflammatory bowel disease 1–11. https://doi.org/10.1111/febs.13771

Bouma, G., & Strober, W. 2003 The immunological and genetic basis of inflammatory bowel disease. Nature Reviews Immunology, 3:521–533. https://doi.org/10.1038/nri1132

Braverman, N.E., & Moser, A.B. 2012 Functions of plasmalogen lipids in health and disease. BBA - Molecular Basis of Disease, 1822:1442–1452. https://doi.org/10.1016/j.bbadis.2012.05.008

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R., Torre, L., & Jemal, A. 2018 Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer Journal for Clinicians, 68:394–424. https://doi.org/10.3322/caac.21492.

Brites, P., Waterham, H.R., & Wanders, R.J.A. 2004 Functions and biosynthesis of plasmalogens in health and disease. Biochimica et Biophysica Acta, 1636:219–231. https://doi.org/10.1016/j.bbalip.2003.12.010

Bruce, W.R., & Corpet, D.E. 1996 The colonic protein fermentation and insulin resistance hypotheses for colon cancer etiology: Experimental tests using precursor lesions. European Journal of Cancer Prevention, 5:41–47. https://doi.org/10.1097/00008469-199612002-00007

Byers, T. 1996 Nutrition and cancer among American Indians and Alaska natives. Cancer, 78:1612–1616 Cai, X., Han, Y., Gu, M., Song, M., Wu, X., Li, Z., Li, F., Goulette, T., & Xiao, H. 2019 Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food and Function, 10:6331–6341. https://doi.org/10.1039/c9fo01537j

Calder, P.C. 2015 Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. BBA - Molecular and Cell Biology of Lipids, 1851:469–484. https://doi.org/10.1016/j.bbalip.2014.08.010

Calviello, G., Serini, S., & Piccioni, E. 2007 n-3 Polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Current Medicinal Chemistry, 14:3059–3069. https://doi.org/10.2174/092986707782793934

Cario, E., & Podolsky, D.K. 2000 Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infection and Immunity, 68:7010–7017. https://doi.org/https://doi.org/10.1128/iai.68.12.7010-7017.2000

Carvalho, P.B., & Cotter, J. 2017 Mucosal healing in ulcerative colitis: A comprehensive review. Drugs, 77:159– 173. https://doi.org/10.1007/s40265-016-0676-y

Cas, M.D., Roda, G., Li, F., & Secundo, F. 2020 Functional lipids in autoimmune inflammatory diseases. International Journal of Molecular Sciences, 21:1–19. https://doi.org/https://doi.org/10.3390/ijms21093074

Castelló, A., Amiano, P., Larrea, N.F. De, Martín, V., Alonso, M., Castano-Vinyals, G., Pere-Gomez, B., Olmedo- Requena, R., Guevara, M., Fernandez-Tardon, G., Fernandez-Villa, T., Jesus, C., Jimenez-Moleon, J., Moreno, V., Davila-Batista, V., Kogevina, M., Aragones, N., & Pollan, M. 2019 Low adherence to the western and high adherence to the mediterranean dietary patterns could prevent colorectal cancer. European Journal of Nutrition, 58:1495–1505. https://doi.org/10.1007/s00394-018-1674-5

Chassing, B., Aitken, J.D., Malleshappa, M., & Vijay-Kumar, M. 2015 Dextran sulfate sodium (DSS)-induced colitis in mice. Current Protocal in Immunology, 104:15.25.1-15.25.14. https://doi.org/10.1002/0471142735.im1525s104

Che, H., Li, Q., Zhang, T., Ding, L., Zhang, L., Shi, H., Yanagita, T., Xue, C., Chang, Y., & Wang, Y. 2018a Comparative study of EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine on Aβ42 induced cognitive deficiency in a rat model of Alzheimer’s disease. Food and Function, 9:3008– 3017. https://doi.org/10.1039/C8FO00643A

Che, H., Zhou, M., Zhang, T., Zhang, L., Ding, L., Yanagita, T., Xu, J., Xue, C., & Wang, Y. 2018b EPA enriched ethanolamine plasmalogens significantly improve cognition of Alzheimer’s disease mouse model by suppressing β-amyloid generation. Journal of Functional Foods, 41:9–18. https://doi.org/10.1016/j.jff.2017.12.016

Cheng, L., & Lai, M. De 2003 Aberrant crypt foci as microscopic precursors of colorectal cancer. World Journal of Gastroenterology, 9:2642–2649. https://doi.org/10.3748/wjg.v9.i12.2642

Cho, J.Y., Chang, H.J., Lee, S.K., Kim, H.J., Hwang, J.K., & Chun, H.S. 2007 Amelioration of dextran sulfate sodium-induced colitis in mice by oral administration of β-caryophyllene, a sesquiterpene. Life Sciences, 80:932–939. https://doi.org/10.1016/j.lfs.2006.11.038

Cohn, J.S., Kamili, A., Wat, E., Chung, R.W.S., & Tandy, S. 2010 Dietary phospholipids and intestinal cholesterol absorption. Nutrients, 2:116–127. https://doi.org/10.3390/nu2020116

Corpet, D.E., Tache, S., Corpet, D.E., & Taché, S. 2009 Most fffective colon cancer chemopreventive agents in rats: A systematic review of aberrant crypt foci and tumor data, ranked by potency. Nutrition and Cancer, 43:1–21. https://doi.org/10.1207/S15327914NC431

Coussens, L.M., & Werb, Z. 2002 Inflammation and cancer. Nature, 420:860–867

De Silva, P.S.A., Luben, R., Shrestha, S.S., Khaw, K.T., & Hart, A.R. 2014 Dietary arachidonic and oleic acid intake in ulcerative colitis etiology: A prospective cohort study using 7-day food diaries. European Journal of Gastroenterology and Hepatology, 26:11–18. https://doi.org/10.1097/MEG.0b013e328365c372

De Silva, P.S.A., Olsen, A., Christensen, J., Schmidt, E.B., Overvaad, K., Tjonneland, A., & Hart, A.R. 2010 An association between dietary arachidonic acid, measured in adipose tissue, and ulcerative colitis. Gastroenterology, 139:1912–1917. https://doi.org/10.1053/j.gastro.2010.07.065

Ding, L., Zhang, L., Shi, H., Xue, C., Yanagita, T., & Zhang, T. 2020 EPA-enriched ethanolamine plasmalogen alleviates atherosclerosis via mediating bile acids metabolism. Journal of Functional Foods, 66:103824. https://doi.org/10.1016/j.jff.2020.103824

Djuric, Z., Aslam, M.N., Simon, B.R., Sen, A., Jiang, Y., Ren, J., Chan, R., Soni, T., Rajendiran, T.M., Smith, W.L., & Brenner, D.E. 2017 Effects of fish oil supplementation on prostaglandins in normal and tumor colon tissue: modulation by the lipogenic phenotype of colon tumors. The Journal of Nutritional Biochemistry, 46:90–99. https://doi.org/10.1016/j.jnutbio.2017.04.013

Dorninger, F., Brodde, A., Braverman, N.E., Moser, A.B., Just, W.W., Forss-Petter, S., Brügger, B., & Berger, J. 2015 Homeostasis of phospholipids — The level of phosphatidylethanolamine tightly adapts to changes in ethanolamine plasmalogens. BBA - Molecular and Cell Biology of Lipids, 1851:117–128. https://doi.org/10.1016/j.bbalip.2014.11.005

Dragonas, C., Bertsch, T., Sieber, C.C., & Brosche, T. 2009 Plasmalogens as a marker of elevated systemic oxidative stress in Parkinson’s disease. Clinical Chemistry and Laboratory Medicine, 47:894–897. https://doi.org/10.1515/CCLM.2009.205

Dueck, D., Chan, M., Tran, K., Wong, J.T., Jay, T., Littman, C., Stimpson, R., & Choy, P.C. 1996 The modulation of choline phosphoglyceride metabolism in human colon cancer. Molecular and Cellular Biochemistry, 162:97–103

Dwivedi, C., Muller, L.A., Goetz-Parten, D.E., Kasperson, K., & Mistry, V. V. 2003 Chemopreventive effects of dietary mustard oil on colon tumor development. Cancer Letters, 196:29–34. https://doi.org/10.1016/S0304- 3835(03)00211-8

Edelblum, K.L., Yan, F., Yamaoka, T., & Polk, D.B. 2006 Regulation of apoptosis during homeostasis and disease in the intestinal epithelium. Inflammatory Bowel Diseases, 12:413–424. https://doi.org/10.1097/01.MIB.0000217334.30689.3e

Eichele, D.D., & Kharbanda, K.K. 2017 Dextran sodium sulfate colitis murine model : An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis 23:6016–6029. https://doi.org/10.3748/wjg.v23.i33.6016

Empey, L.R., Jewell, L.D., Garg, M.L., Thomson, A.B.R., Clandinin, M.T., & Fedorak, R.N. 1991 Fish oil-enriched diet is mucosal protective against acetic acid-induced colitis in rats. Canadian Journal of Physiology and Pharmacology, 69:480–487. https://doi.org/10.1139/y91-072

Fan, F., Mundra, P.A., Fang, L., Galvin, A., Moore, X.L., Weir, J.M., Wong, G., White, D.A., Chin-dusting, J., Sparrow, M.P., Meikle, P.J., & Dart, A.M. 2015 Lipidomic profiling in inflammatory bowel disease: comparison between ulcerative colitis and crohn’s disease. Inflammatory Bowel Disease, 21:1511–1518. https://doi.org/10.1097/MIB.0000000000000394

Farooqui, A.A. 2010 Studies on plasmalogen-selective phospholipase A2 in brain. Molecular Neurobiology, 41:267–273. https://doi.org/10.1007/s12035-009-8091-y

Femia, A.P., Luceri, C., Toti, S., Giannini, A., Dolara, P., & Caderni, G. 2010 Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats. BMC Cancer, 10. https://doi.org/10.1186/1471-2407-10-194

Fiala, E.S., & Stathopoulos, C. 1984 Metabolism of methylazoxymethanol acetate in the F344 rat and strain-2 guinea pig and its inhibition by pyrazole and disulfiram. Journal of Cancer Research Clinlcal Oncology, 108:129–134

Folch, J., Lees, M., & Stanley, G.H. 1957 A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem, 226:497–509

Fulda, S., Gorman, A.M., Hori, O., & Samali, A. 2010 Cellular stress responses: cell survival and cell death. International Journal of Cell Biology, 2010:1–23. https://doi.org/10.1155/2010/214074

GBD 2017, I.B.D.C. 2020 The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. The Lancet Gastroenterology and Hepatology, 5:17–30. https://doi.org/https://doi.org/10.1016/S2468-1253(19)30333-4

Gil, Á. 2002 Polyunsaturated fatty acids and inflammatory diseases. Biomedicine & Pharmacotherapy, 56:388–396 Ginsberg, L., Rafique, S., Xuereb, J.H., Rapoport, S.I., & Gershfeld, N.L. 1995 Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Research, 698:223–226. https://doi.org/10.1016/0006-8993(95)00931-F

Gordon, S., & Martinez, F.O. 2010 Alternative activation of macrophages: Mechanism and functions. Immunity, 32:593–604. https://doi.org/10.1016/j.immuni.2010.05.007

Grisham, M.B., & Granger, D.N. 1988 Neutrophil-mediated mucosal injury - Role of reactive oxygen metabolites. Digestive Diseases and Sciences, 33:6S-15S. https://doi.org/10.1007/BF01538126

Günther, C., Neumann, H., Neurath, M.F., & Becker, C. 2013 Apoptosis, necrosis and necroptosis: Cell death regulation in the intestinal epithelium. Gut, 62:1062–1071. https://doi.org/10.1136/gutjnl-2011-301364

Hahnel, D., Beyer, K., & Engelmann, B. 1999 Inhibition of peroxyl radical-mediated lipid oxidation by plasmalogen phospholipid and alpha-tocopherol. Free Radical Biology & Medicine, 27:1087–1094. https://doi.org/https://doi.org/10.1016/S0891-5849(99)00142-2

Han, Y., Song, M., Gu, M., Ren, D., Zhu, X., Cao, X., Li, F., Wang, W., Cai, X., Yuan, B., Goulette, T., Zhang, G., & Xiao, H. 2019 Dietary intake of whole strawberry inhibited colonic inflammation in dextran sulfate sodium- treated mice via restoring immune homeostasis and alleviating gut microbiota dysbiosis. Journal of Agricultural and Food Chemistry, 67:9168–9177. https://doi.org/10.1021/acs.jafc.8b05581

Hara, S., Sone, T., & Totani, Y. 2000 Antioxidative activity of nitrogen-containing phospholipids towards emulsified fish oil. Journal of Japan Oil Chemists’Society, 49:937–974

Harada-Shiba, M., Kinoshita, M., & Shimokado, K. 1998 Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms. Journal of Biological Chemistry, 273:9681–9687. https://doi.org/10.1074/jbc.273.16.9681

Hofmanová, J., Straková, N., Vaculová, A.H., Tylichová, Z., Šafa, B., Skender, B., & Kozubík, A. 2014 Interaction of dietary fatty acids with tumour necrosis factor family cytokines during colon inflammation and cancer. Mediators of Inflammation, 2014:1–17. https://doi.org/http://dx.doi.org/10.1155/2014/848632

Honsho, M., Abe, Y., & Fujiki, Y. 2017 Plasmalogen biosynthesis is spatiotemporally regulated by sensing plasmalogens in the inner leaflet of plasma membranes. Scientific Reports, 7:43936. https://doi.org/10.1038/srep43936

Honsho, M., Abe, Y., & Fujiki, Y. 2015 Dysregulation of plasmalogen homeostasis impairs cholesterol biosynthesis. Journal of Biological Chemistry, 290:28822–28833. https://doi.org/10.1074/jbc.M115.656983

Honsho, M., & Fujiki, Y. 2017 Plasmalogen homeostasis – regulation of plasmalogen biosynthesis and its physiological consequence in mammals. FEBS Letters, 591:2720–2729. https://doi.org/10.1002/1873- 3468.12743

Hossain, Z., Hosokawa, M., & Takahashi, K. 2009 Growth inhibition and induction of apoptosis of colon cancer cell lines by applying marine phospholipid. Nutrition and Cancer, 61:123–130. https://doi.org/10.1080/01635580802395725

Hou, J.K., Abraham, B., & El-Serag, H. 2011 Dietary intake and risk of developing inflammatory bowel disease: A systematic review of the literature. American Journal of Gastroenterology, 106:563–573. https://doi.org/10.1038/ajg.2011.44

Hu, Q., Yuan, B., Wu, X., Du, H., Gu, M., Han, Y., Yang, W., Song, M., & Xiao, H. 2019 Dietary Intake of Pleurotus eryngii Ameliorated Dextran-Sodium-Sulfate-Induced Colitis in Mice. Molecular Nutrition and Food Research, 63:1–10. https://doi.org/10.1002/mnfr.201801265

Huang, C., & Freter, C. 2015 Lipid Metabolism , Apoptosis and Cancer Therapy 924–949. https://doi.org/10.3390/ijms16010924

Hung, N.D., Kim, M.R., & Sok, D.E. 2011 Oral administration of 2-docosahexaenoyl lysophosphatidylcholine displayed anti-inflammatory effects on zymosan A-induced peritonitis. Inflammation, 34:147–160. https://doi.org/10.1007/s10753-010-9218-z

IBD in EPIC Study Investigators, Tjonneland, A., Overvad, K., Bergmann, M.M., Nagel, G., Linseisen, J., Hallmans, G., Palmqvist, R., Sjodin, H., Hägglund, G., Berglund, G., Lindgren, S., Grip, O., Palli, D., Day, N.E., Khaw, K.T., Bingham, S., Riboli, E., Kennedy, H., & Hart, A. 2009 Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: A nested case-control study within a European prospective cohort study. Gut, 58:1606–1611. https://doi.org/10.1136/gut.2008.169078

Iborra, M., Moret, I., Rausell, F., Bastida, G., Aguas, M., Cerrillo, E., Nos, P., & Beltran, B. 2011 Role of oxidative stress and antioxidant enzymes in Crohn’s disease. Biochemical Society Transactions, 39:1102–1106. https://doi.org/https://doi.org/10.1042/BST0391102

Ifuku, M., Katafuchi, T., Mawatari, S., Noda, M., Miake, K., Sugiyama, M., & Fujino, T. 2012 Anti- inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice. Journal of Neuroinflammation, 9:1–13. https://doi.org/https://doi.org/10.1186/1742-2094-9-197

Jena, G., Trivedi, P.P., & Sandala, B. 2012 Oxidative stress in ulcerative colitis: An old concept but a new concern. Free Radical Research, 46:1339–1345. https://doi.org/10.3109/10715762.2012.717692

Jia, W., Xie, G., & Jia, W. 2018 Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Reviews Gastroenterology and Hepatology, 15:111–128. https://doi.org/10.1038/nrgastro.2018.23

John, S., Luben, R., Shrestha, S.S., Welch, A., Khaw, K.T., & Hart, A.R. 2010 Dietary n-3 polyunsaturated fatty acids and the aetiology of ulcerative colitis: A UK prospective cohort study. European Journal of Gastroenterology and Hepatology, 22:602–606. https://doi.org/10.1097/MEG.0b013e3283352d05

Jutanom, M., Higaki, C., Yamashita, S., Nakagawa, K., Matsumoto, S., & Kinoshita, M. 2020 Effects of sphingolipid fractions from golden oyster mushroom (Pleurotus citrinopileatus) on apoptosis induced by inflammatory stress in an intestinal tract in vitro model. Journal of Oleo Science, 69:1087–1093. https://doi.org/10.5650/jos.ess20105

Kaplan, G.G., & Ng, S.C. 2017 Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology, 152:313–321. https://doi.org/10.1053/j.gastro.2016.10.020

Kim, E., Kim, Yerin, Lee, J., Shin, J.H., Seok, P.R., Kim, Yuri, & Yoo, S.H. 2020 Leucrose, a natural sucrose isomer, suppresses dextran sulfate sodium (DSS)-induced colitis in mice by regulating macrophage polarization via JAK1/STAT6 signaling. Journal of Functional Foods, 74:104156. https://doi.org/10.1016/j.jff.2020.104156

Kim, I.W., Myung, S.J., Do, M.Y., Ryu, Y.M., Kim, M.J., Do, E.J., Park, S., Yoon, S.M., Ye, B.D., Byeon, J.S., Yang, S.K., & Kim, J.H. 2010 Western-style diets induce macrophage infiltration and contribute to colitis- associated carcinogenesis. Journal of Gastroenterology and Hepatology (Australia), 25:1785–1794. https://doi.org/10.1111/j.1440-1746.2010.06332.x

Kinoshita, M., & Shimokado, K. 1999 Autocrine FGF-2 is responsible for the cell density – dependent susceptibility to apoptosis of HUVEC; A role of a calpain inhibitor – sensitive mechanism. Arterioscler Thromb Vasc Biol., 19:2323–2329

Kraft, S.C., & Kirsner, J.B. 1971 Immunological apparatus of the gut and inflammatory bowel disease. Gastroenterology, 60:922–951. https://doi.org/10.1016/S0016-5085(71)80094-X

Krawisz, J.E., Sharon, P., & Stenson, W.F. 1984 Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology, 87:1344–1350. https://doi.org/10.1016/0016-5085(84)90202-6

Krzystek-korpacka, M., Diakowska, D., Kapturkiewicz, B., Bebenek, M., & Gamian, A. 2013 Profiles of circulating inflammatory cytokines in colorectal cancer (CRC), high cancer risk conditions , and health are distinct . Possible implications for CRC screening and surveillance. Cancer letters, 337:107–114. https://doi.org/10.1016/j.canlet.2013.05.033

Küllenberg, D., Taylor, L.A., Schneider, M., & Massing, U. 2012 Health effects of dietary phospholipids. Lipids in Health and Disease, 11:1–16

Labianca, R., Beretta, G.D., Kildani, B., Milesi, L., Merlin, F., Mosconi, S., Pessi, M.A., Prochilo, T., Quadri, A., Gatta, G., de Braud, F., & Wils, J. 2010 Colon cancer. Critical Reviews in Oncology/Hematology, 74:106–133. https://doi.org/10.1016/j.critrevonc.2010.01.010

Lavi, I., Levinson, D., Peri, I., Nimri, L., Hadar, Y., & Schwartz, B. 2010 Orally administered glucans from the edible mushroom Pleurotus pulmonarius reduce acute inflammation in dextran sulfate sodium-induced experimental colitis. British Journal of Nutrition, 103:393–402. https://doi.org/10.1017/S0007114509991760

Lee, J.Y., Sim, T., Lee, J., Na, H., & Lee, J. 2017 Chemopreventive and Chemotherapeutic Effects of Fish Oil derived Omega-3 Polyunsaturated Fatty Acids on Colon Carcinogenesis 6:147–160

Leßig, J., & Fuchs, B. 2009 Plasmalogens in biological systems: Their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Current Medicinal Chemistry, 16:2021–2041

Liu, H., Kai, L., Du, H., Wang, X., & Wang, Y. 2019 LPS Inhibits fatty acid absorption in enterocytes through TNF- α secreted by macrophages. Cells, 8:1–21. https://doi.org/10.3390/cells8121626

Lohner, K. 1996 Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chemistry and Physics of Lipids, 81:167–184. https://doi.org/10.1016/0009-3084(96)02580-7

Lopez, D.H., Bestard-Escalas, J., Garate, J., Maimó-barceló, A., Fernández, R., Reigada, R., Khorrami, S., Ginard, D., Okazaki, T., Fernández, J., & Barcelo-Coblijn, G. 2018 Tissue-selective alteration of ethanolamine plasmalogen metabolism in dedifferentiated colon mucosa. BBA - Molecular and Cell Biology of Lipids, 1863:928–938. https://doi.org/10.1016/j.bbalip.2018.04.017

Lu, J., Wang, A., Ansari, S., Hershberg, R.M., & McKay, D.M. 2003 Colonic bacterial superantigens evoke an inflammatory response and exaggerate disease in mice recovering from colitis. Gastroenterology, 125:1785– 1795. https://doi.org/10.1053/j.gastro.2003.09.020

Maeba, R., & Ueta, N. 2003 Ethanolamine plasmalogen and cholesterol reduce the total membrane oxidizability measured by the oxygen uptake method. Biochemical and Biophysical Research Communications, 302:265–270. https://doi.org/10.1016/S0006-291X(03)00157-8

Mawatari, S., Ohara, S., Taniwaki, Y., Tsuboi, Y., Maruyama, T., & Fujino, T. 2020 Improvement of blood plasmalogens and clinical symptoms in Parkinson’s disease by oral administration of ether phospholipids: A preliminary report. Parkinson’s Disease, 2020:1–7. https://doi.org/10.1155/2020/2671070

McKay, D.M., Philpott, D.J., & Perdue, M.H. 1997 Review article: In vitro models in inflammatory bowel disease research - A critical review. Alimentary Pharmacology and Therapeutics, Supplement, 11:70–80. https://doi.org/10.1111/j.1365-2036.1997.tb00811.x

McLellan, E.A., Medline, A., & Bird, R.P. 1991 Dose response and proliferative characteristics of aberrant crypt foci: putative preneoplastic lesions in rat colon. Carcinogenesis, 12:2093–2098. https://doi.org/10.1093/carcin/12.11.2093

McMullen, C.A., Natarajan, V., & Smyth, S.S. 2020 Lysophospholipids and their receptors: New data and new insights into their function. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1865:158697. https://doi.org/10.1016/j.bbalip.2020.158697

Medicherla, K., Sahu, B.D., Kuncha, M., Kumar, J.M., Sudhakar, G., & Sistla, R. 2015 Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling. Food and Function, 6:2984–2995. https://doi.org/10.1039/c5fo00405e

Messias, M.C., Mecatti, G.C., Priolli, D.G., & Carvalho, P.O. 2018 Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer. Lipids in Health and Disease, 17:1–12

Moulahoum, H., Nagy, A., Djerdjouri, B., & Clichici, S. 2018 Precancerous ACF induction affects their regional distribution forsaking oxidative stress implication in 1,2-dimethylhydrazine-induced colon carcinogenesis model. Inflammopharmacology, 26:457–468. https://doi.org/10.1007/s10787-017-0377-5

Nadeem, M.S., Kumar, V., Al-abbasi, F.A., Amjad, M., & Anwar, F. 2019 Risk of colorectal cancer in inflammatory bowel diseases. Seminars in Cancer Biology, 40:51–60. https://doi.org/10.1016/j.semcancer.2019.05.001

Nagengast, F.M., Grubben, M.J.A.L., & Munster, I.P. 1995 Role of bile acids in colorectal carcinogenesis. European Journal of Cancer, 31:1067–1070

Narayanan, B.A., Narayanan, N.K., Desai, D., Pittman, B., & Reddy, B.S. 2004 Effects of a combination of docosahexaenoic acid and 1,4-phenylene bis(methylene) selenocyanate on cyclooxygenase 2, inducible nitric oxide synthase and β-catenin pathways in colon cancer cells. Carcinogenesis, 25:2443–2449. https://doi.org/10.1093/carcin/bgh252

Nguma, E., Tominaga, Y., Yamashita, S., Otoki, Y., Yamamoto, A., Nakagawa, K., Miyazawa, T., & Kinoshita, M. 2020 Dietary ethanolamine plasmalogen ameliorates colon mucosa inflammatory stress and pre-cancerous ACF in 1,2-DMH-induced colon carcinogenesis mice model: protective role of vinyl ether linkage. Lipids, 56:In press. https://doi.org/10.1002/lipd.12283

Nishimukai, M., Wakisaka, T., & Hara, H. 2003 Ingestion of plasmalogen markedly increased plasmalogen levels of blood plasma in rats. Lipids, 38:1227–1235. https://doi.org/10.1007/s11745-003-1183-9

Nishimukai, M., Yamashita, M., Watanabe, Y., Yamazaki, Y., Nezu, T., Maeba, R., & Hara, H. 2011 Lymphatic absorption of choline plasmalogen is much higher than that of ethanolamine plasmalogen in rats. European Journal of Nutrition, 50:427–436. https://doi.org/10.1007/s00394-010-0149-0

Oh, S.Y., Cho, K.A., Kang, J.L., Kim, K.H., & Woo, S.Y. 2014 Comparison of experimental mouse models of inflammatory bowel disease. International Journal of Molecular Medicine, 33:333–340. https://doi.org/10.3892/ijmm.2013.1569

Ohkawa, H., Ohishi, N., & Yagi, K. 1979 Assay for lipid peroxides in animal tissues thiobarbituric acid reaction. Analytical Biochemistry, 95:351–358

Orlando, F.A., Tan, D., Baltodano, J.D., Khoury, T., Gibbs, J.F., Hassid, V.J., Ahmed, B.H., & Alrawi, S.J. 2008 Aberrant crypt foci as precursors in colorectal cancer progression. Journal of Surgical Oncology, 98:207–213. https://doi.org/10.1002/jso.21106

Otoki, Y., Kato, S., Kimura, F., Furukawa, K., Yamashita, S., Arai, H., Miyazawa, T., & Nakagawa, K. 2017 Accurate quantitation of choline and ethanolamine plasmalogen molecular species in human plasma by liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 134:77–85. https://doi.org/10.1016/j.jpba.2016.11.019

Ozaki, T., & Nakagawara, A. 2011 Role of p53 in cell death and human cancers. Cancers, 3:994–1013. https://doi.org/10.3390/cancers3010994

Paul, S., Lancaster, G.I., & Meikle, P.J. 2019 Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Progress in Lipid Research, 74:186–195. https://doi.org/10.1016/j.plipres.2019.04.003

Perše, M., & Cerar, A. 2012 Dextran sodium sulphate colitis mouse model: traps and tricks. Journal of Biomedicine and Biotechnology, 2012:1–13. https://doi.org/10.1155/2012/718617

Perše, M., & Cerar, A. 2011 Morphological and molecular alterations in 1,2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. Journal of Biomedicine and Biotechnology, 2011:1–14. https://doi.org/10.1155/2011/473964

Raza, H., John, A., & Shafarin, J. 2016 Potentiation of LPS-induced apoptotic cell death in human hepatoma HepG2 cells by aspirin via ROS and mitochondrial dysfunction: Protection by N-acetyl cysteine. PLoS ONE, 11:1–19. https://doi.org/10.1371/journal.pone.0159750

Redza-dutordoir, M., & Averill-bates, D.A. 2016 Activation of apoptosis signalling pathways by reactive oxygen species. BBA-Biochimica et Biophysica Acta, 1863:2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012

Reiss, D., Beyer, K., & Engelmann, B. 1997 Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochemical Journal, 323:807–814

Rhee, S.H. 2014 Lipopolysaccharide: Basic biochemistry, intracellular signaling, and physiological impacts in the gut. Intestinal Research, 12:90–95. https://doi.org/10.5217/ir.2014.12.2.90

Richardson, J., Nelson, L., Curry, A., & Ralston, S. 2018 The increasing global incidences of Ulcerative Colitis; Implications for the economic burden of Ulcerative Colitis. Value in Health, 21:1–268. https://doi.org/https://doi.org/10.1016/j.jval.2018.04.556

Rodr, J., Belarbi, E., S, L.G., & Diego, L. 1998 J Rodrıguez-Ruiz - Rapid simultaneous lipid extraction and transesterification for fatty acid analyses (1998).pdf 12:689–691

Rouser, G., Fleischer, S., & Yamamoto, A. 1970 Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorous analysis of spots. Lipids, 5:445–500. https://doi.org/10.4218/etrij.17.0116.0074

Rubio, J.M., Astudillo, A.M., Casas, J., Balboa, M.A., & Balsinde, J. 2018 Regulation of phagocytosis in macrophages by membrane ethanolamine plasmalogens. Frontiers in Immunology, 9:1–14. https://doi.org/10.3389/fimmu.2018.01723

Sakita, J.Y., Gasparotto, B., Garcia, S.B., Uyemura, S.A., & Kannen, V. 2017 A critical discussion on diet, genomic mutations and repair mechanisms in colon carcinogenesis. Toxicology Letters, 265:106–116. https://doi.org/10.1016/j.toxlet.2016.11.020

Sanchez-muñoz, F., Dominguez-lopez, A., Yamamoto-furusho, J.K., Sanchez-muñoz, F., & Dominguez-lopez, A. 2008 Role of cytokines in inflammatory bowel disease. World Journal of Gastroenterology, 14:4280–4288. https://doi.org/10.3748/wjg.14.4280

Sarotra, P., Kansal, S., Sandhir, R., & Agnihotri, N. 2012 Chemopreventive effect of different ratios of fish oil and corn oil on prognostic markers, DNA damage and cell cycle in colon carcinogenesis. European Journal of Cancer Prevention, 21:147–154. https://doi.org/10.1097/CEJ.0b013e32834c9bfb

Scaioli, E., Liverani, E., & Belluzzi, A. 2017 The imbalance between n-6/n-3 polyunsaturated fatty acids and inflammatory bowel disease: A comprehensive review and future therapeutic perspectives. International Journal of Molecular Sciences, 18:2619. https://doi.org/10.3390/ijms18122619

Seril, D.N., Liao, J., Yang, G.Y., & Yang, C.S. 2003 Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis, 24:353–362. https://doi.org/10.1093/carcin/24.3.353

Shi, L., Dai, Y., Jia, B., Han, Y., Guo, Y., Xie, T., Liu, J., Tan, X., Ding, P., & Li, J. 2019 The inhibitory effects of Qingchang Wenzhong granule on the interactive network of inflammation, oxidative stress, and apoptosis in rats with dextran sulfate sodium-induced colitis. Journal of Cellular Biochemistry, 120:9979–9991. https://doi.org/10.1002/jcb.28280

Steinberg, S.J., Dodt, G., Raymond, G. V., Braverman, N.E., Moser, A.B., & Moser, H.W. 2006 Peroxisome biogenesis disorders. Biochimica et Biophysica Acta - Molecular Cell Research, 1763:1733–1748. https://doi.org/10.1016/j.bbamcr.2006.09.010

Takahashi, T., Kamiyoshihara, R., Otoki, Y., Ito, J., Kato, S., Suzuki, T., Yamashita, S., Eitsuka, T., Ikeda, I., & Nakagawa, K. 2020 Structural changes of ethanolamine plasmalogen during intestinal absorption. Food & function, 11:8068–8076. https://doi.org/10.1039/d0fo01666g

Taylor, L.A., Pletschen, L., Arends, J., Unger, C., & Massing, U. 2010 Marine phospholipids - a promising new dietary approach to tumor-associated weight loss. Supportive Care in Cancer, 18:159–170. https://doi.org/10.1007/s00520-009-0640-4

Tlakalova-Hogenova, H., Stepnkova, R., Kozakova, H., Hudcovic, T., Vannucci, L., Tuckova, L., Rossmann, P., Hrncir, T., Kverka, M., Zakostelska, Z., Klimesova, K., Pribylova, J., Bartova, J., Sanchez, D., Fundova, P., Borovska, D., Srutkova, D., Zidek, Z., Schwarzer, M., Drastich, P., & Funda, D.P. 2011 The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cellular and Molecular Immunology, 8:110–120. https://doi.org/10.1038/cmi.2010.67

Wall, R., Ross, R.P., Fitzgerald, G.F., & Stanton, C. 2010 Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition Reviews, 68:280–289. https://doi.org/10.1111/j.1753- 4887.2010.00287.x

Wallner, S., & Schmitz, G. 2011 Plasmalogens the neglected regulatory and scavenging lipid species. Chemistry and Physics of Lipids, 164:573–589. https://doi.org/10.1016/j.chemphyslip.2011.06.008

Woo, J.K., Choi, S., Kang, J.H., Kim, D.E., Hurh, B.S., Jeon, J.E., Kim, S.Y., & Oh, S.H. 2016 Fermented barley and soybean (BS) mixture enhances intestinal barrier function in dextran sulfate sodium (DSS)-induced colitis mouse model. BMC Complementary and Alternative Medicine, 16:1–9. https://doi.org/10.1186/s12906-016- 1479-0

World Health Organization Fat and Oils in human Nutrition 1994 Report of a Joint Expert Consultation, Food and Agriculture Organization of the United Nations and the World Health Organization

Yamashita, S., Abe, A., Nakagawa, K., Kinoshita, M., & Miyazawa, T. 2014a Separation and detection of plasmalogen in marine invertebrates by high-performance liquid chromatography with evaporative light- scattering detection. Lipids, 49:1261–1273. https://doi.org/10.1007/s11745-014-3957-9

Yamashita, S., Akada, K., Matsumoto, S., & Kinoshita, M. 2020a Effects of dietary ethanol extract from fruiting bodies of goldent oyster mushroom (Pleurotus citrinopileatus) on chronic colon inflammation in mice treated with dextran sulfate sodium salt. Mushroom Science and Biotechnology, 28:7–14

Yamashita, S., Fujisawa, K., Tominaga, Y., Nguma, E., Takahshi, T., Otoki, Y., Yamamoto, A., Higuchi, O., Nakagawa, K., Kinoshita, M., & Miyazawa, T. 2020b Absorption kinetics of ethanolamine plasmalogen and its hydrolysate in mice. Journal of Oleo Science, In press

Yamashita, S., Hashimoto, M., Haque, A., Nakagawa, K., Kinoshita, M., Shido, O., & Miyazawa, T. 2017 Oral administration of ethanolamine glycerophospholipid containing a high level of plasmalogen improves memory impairment in amyloid β‑infused rats. Lipids, 52:575–585. https://doi.org/10.1007/s11745-017-4260-3

Yamashita, S., Honjo, A., Aruga, M., Nakagawa, K., & Miyazawa, T. 2014b Preparation of marine plasmalogen and selective identification of molecular species by LC-MS/MS. Journal of Oleo Science, 63:423–430. https://doi.org/10.5650/jos.ess13188

Yamashita, S., Kanno, S., Honjo, A., Otoki, Y., Nakagawa, K., Kinoshita, M., & Miyazawa, T. 2016a Analysis of plasmalogen species in foodstuffs. Lipids, 15:199–210. https://doi.org/10.1007/s11745-015-4112-y

Yamashita, S., Kanno, S., Nakagawa, K., Kinoshita, M., & Miyazawa, T. 2015 Extrinsic plasmalogens suppress neuronal apoptosis in mouse neuroblastoma Neuro-2A cells: importance of plasmalogen molecular species. RSC Advances, 5:61012–61020. https://doi.org/10.1039/C5RA00632E

Yamashita, S., Kiko, T., Fujisawa, H., Hashimoto, M., Nakagawa, K., Kinoshita, M., Furukawa, K., Arai, H., & Miyazawa, T. 2016b Alteration in the levels of amyloid-β, phospholipid hydroperoxide, and plasmalogen in the blood of patients with Alzheimer’s Disease: Possible interactions between amyloid-β and these lipids. Journal of Alzheimer’s Disease, 50:527–537. https://doi.org/10.3233/JAD-150640

Yamashita, S., Sakurai, R., Hishiki, K., Aida, K., & Kinoshita, M. 2017 Effects of dietary plant-origin glucosylceramide on colon cytokine contents in DMH-treated mice. Journal of Oleo Science, 66:157–160

Yamashita, S., Seino, T., Aida, K., & Kinoshita, M. 2017 Effects of plant sphingolipids on inflammatory stress in differentiated Caco-2 cells. Journal of Oleo Science, 66:1337–1342. https://doi.org/10.5650/jos.ess17171

Yamashita, S., Shimada, K., Sakurai, R., Yasuda, N., Oikawa, N., Kamiyoshihara, R., Otoki, Y., Nakagawa, K., Miyazawa, T., & Kinoshita, M. 2019 Decrease in intramuscular levels of phosphatidylethanolamine bearing Arachidonic Acid during postmortem aging depends on meat cuts and breed. European Journal of Lipid Science and Technology, 121:1800370. https://doi.org/10.1002/ejlt.201800370

Yang, S.Y., Sales, K.M., Fuller, B., Seifalian, A.M., & Winslet, M.C. 2009 Apoptosis and colorectal cancer: implications for therapy. Trends in Molecular Medicine, 15:225–233. https://doi.org/10.1016/j.molmed.2009.03.003

Yang, Y., Tong, Q., Luo, H., Huang, R., & Li, Z. 2016 Chitooligosaccharides attenuate lipopolysaccharide-induced inflammation and apoptosis of intestinal epithelial cells: Possible involvement of TLR4/NF-κB pathway. Indian Journal of Pharmaceutical Education and Research, 50:109–115. https://doi.org/10.5530/ijper.50.1.14

Yavin, E., & Gatt, S. 1972 Oxygen‐dependent cleavage of the vinyl‐ether linkage of plasmalogen. European Journal of Biochemistry, 25:431–436. https://doi.org/10.1111/j.1432-1033.1972.tb01712.x

Yogosawa, S., & Yoshida, K. 2018 Tumor suppressive role for kinases phosphorylating p53 in DNA damage- induced apoptosis. Cancer Science, 109:3376–3382. https://doi.org/10.1111/cas.13792

Yusof, A.S., Isa, Z., & Shah, S.A. 2012 Dietary Patterns and Risk of Colorectal Cancer : A Systematic Review of Cohort Studies ( 2000-2011 ). Asian Pacific Journal of Cancer Prevention, 13:4713–4717. https://doi.org/http://dx.doi.org/10.7314/APJCP.2012.13.9.4713

Zhang, T., Xu, J., Wang, Y., & Xue, C. 2019 Health benefits of dietary marine DHA / EPA-enriched glycerophospholipids. Progress in Lipid Research, 75:100997. https://doi.org/10.1016/j.plipres.2019.100997

Zhu, W., Yu, J., Nie, Y., Shi, X., Liu, Y., Li, F., & Zhang, X.L. 2014 Disequilibrium of M1 and M2 macrophages correlates with the development of experimental inflammatory bowel diseases. Immunological Investigations, 43:638–652. https://doi.org/10.3109/08820139.2014.909456

参考文献をもっと見る