リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Amniotic fluid neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein in predicting fetal inflammatory response syndrome.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Amniotic fluid neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein in predicting fetal inflammatory response syndrome.

KATSURA Daisuke 0000-0002-5357-5700 TSUJI Shunichiro 30601546 0000-0003-3945-6817 HAYASHI Kaori 70569251 TOKORO Shinsuke 20613475 ZEN Rika HOSHIYAMA Takako NAKAMURA Akiko 70839430 KIMURA Fuminori 90322148 0000-0002-9840-4227 KITA Nobuyuki 20273419 MURAKAMI Takashi 20240666 0000-0002-0250-0856 滋賀医科大学

2021.05.30

概要

Aim:
To analyze the effectiveness of amniotic fluid neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein as predictive factors for fetal inflammatory response syndrome.
Methods:
We classified single pregnancy cases into the fetal inflammatory response syndrome and nonfetal inflammatory response syndrome groups. We collected amniotic fluid at vaginal delivery and cesarean section and compared the patient characteristics, maternal white blood cell count, C-reactive protein level, and amniotic fluid interleukin-6; neutrophil gelatinase-associated lipocalin; and L-type fatty acid-binding protein levels between the groups. We further analyzed the relationship between L-type fatty acid-binding protein levels and neonatal clinical outcomes.
Results:
We analyzed 129 pregnancies, of which 36 and 93 (27.9% and 72.1%, respectively) were classified into the fetal inflammatory response syndrome and nonfetal inflammatory response syndrome groups, respectively. We observed significant differences in the maternal white blood cell counts and amniotic fluid interleukin-6 and neutrophil gelatinase-associated lipocalin levels. On the multivariate analysis, the useful predictive factors were maternal white blood cell count and amniotic fluid interleukin-6 and neutrophil gelatinase-associated lipocalin levels. Furthermore, the level of L-type fatty acid-binding protein was significantly higher in the transient tachypnea of the newborn and postnatal respiratory support group than in the control group.
Conclusions:
The maternal white blood cell count and amniotic interleukin-6 and neutrophil gelatinase-associated lipocalin levels were effective predictors of fetal inflammatory response syndrome. Amniotic fluid L-type fatty acid-binding protein level was an effective predictor of neonatal respiratory support.

関連論文

参考文献

(1)

Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM.

Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical

significance. Am J Obstet Gynecol 2015; 214: S29–S52.

(2)

Gomez R, Romero R, Ghezzi F, Yoon BH, Mazor M, Berry SM. The fetal

inflammatory response syndrome. Am J Obstet Gynecol 1998; 179: 194–202.

(3)

Romero R, Gomez R, Ghezzi F, et al. A fetal systemic inflammatory response

is followed by the spontaneous onset of preterm parturition. Am J Obstet Gynecol 1998;

179: 186–193.

(4)

Gotsch F, Romero R, Kusanovic JP, et al. The fetal inflammatory response

syndrome. Clin Obstet Gynecol 2007; 50: 652–683.

(5)

Mastrolia SA, Erez O, Loverro G, et al. Ultrasonographic approach to

diagnosis of fetal inflammatory response syndrome: a tool for at-risk fetuses? Am J

Obstet Gynecol 2016; 215: 9–20.

(6)

Kidokoro K, Furuhashi M, Kuno N, Ishikawa K. Amniotic fluid elastase and

lactate dehydrogenase: association with histologic chorioamnionitis. Acta Obstet

Gynecol 2006; 85: 669–674.

(7)

Harirah H, Donia SE, Hsu CD. Amniotic fluid matrix metalloproteinase-9 and

interleukin-6 in predicting intra-amniotic infection. Obstet Gynecol 2002; 99: 80–84.

(8)

Yoon BH, Romero R, Moon JB, et al. Clinical significance of intra-amniotic

inflammation in patients with preterm labor and intact membranes. Am J Obstet

Gynecol 2001; 185: 1130–1136.

17

(9)

Asada T, Isshiki R, Hayase N, et al. Impact of clinical context on acute kidney

injury biomarker performances: differences between neutrophil gelatinase-associated

lipocalin and L-type fatty acid-binding protein. Sci Rep 2016; 6: 33077.

(10)

Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for

medical statistics. Bone Marrow Transplant 2013; 48: 452–458.

(11)

Kjeldsen L, Johnsen A.H, Sengelov H, Borregaard N. Isolation and primary

structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol

Chem 1993; 268: 10425–10432.

(12)

Cowland JB, Borregaard N. Molecular characterization and pattern of tissue

expression of the gene for neutrophil gelatinase-associated lipocalin from humans.

Genomics 1997; 45: 17–23.

(13)

Mori K, Lee HT, Rapoport D, et al. Endocytic delivery of

lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury.

J Clin Invest 2005; 115: 610–621.

(14)

Mårtensson J, Bellomo R. The rise and fall of NGAL in acute kidney injury.

Blood Purif 2014; 37: 304–310.

(15)

Yoon BH, Park CW, Chaiworapongsa T. Intrauterine infection and the

development of cerebral palsy. BJOG 2003; 110: 124–127.

(16)

Musilova I, Bestvina T, Hudeckova M, et al. Vaginal fluid interleukin-6

concentrations as a point-of-care test is of value in women with preterm prelabor

rupture of membranes. Am J Obstet Gynecol 2016; 215: 619.e1–619.e12.

(17)

Yamamoto T, Noiri E, Ono Y, et al. Renal L-type fatty acid–binding protein in

acute ischemic injury. J Am Soc Nephrol 2007; 18: 2894–2902.

18

(18)

Derikx JP, Poeze M, van Bijnen AA, Buurman WA, Heineman E. Evidence

for intestinal and liver epithelial cell injury in the early phase of sepsis. Shock 2007; 28:

544–548.

(19)

Schurink M, Scholten IG, Kooi EM, et al. Intestinal fatty acid-binding protein

in neonates with imminent necrotizing enterocolitis. Neonatology 2014; 106: 49–54.

(20)

Lencki SG, Maciulla MB, Eglinton GS. Maternal and umbilical cord serum

interleukin levels in preterm labor with clinical chorioamnionitis. Am J Obstet Gynecol

1994; 170: 1345–1351.

(21)

Narendran V, Wickett RR, Pickens WL, Hoath SB. Interaction between

pulmonary surfactant and vernix: a potential mechanism for induction of amniotic fluid

turbidity. Pediatr Res 2000; 48: 120–124.

(22)

Nowak M, Oszukowski P, Szpakowski M, Malinowski A,

Maciolek-Blewniewska G. Intrauterine infections. I. The role of C-reactive protein,

white blood cell count and erythrocyte sedimentation rate in pregnant women in the

detection of intrauterine infection after preliminary rupture of membranes. Ginekol Pol

1998; 69: 615–622.

(23)

Torloni MR, Betrán AP, Horta BL, et al. Prepregnancy BMI and the risk of

gestational diabetes: a systematic review of the literature with meta-analysis. Obes Rev

2009; 10: 194–203.

(24)

Li YX, Long DL, Liu J, et al. Gestational diabetes mellitus in women

increased the risk of neonatal infection via inflammation and autophagy in the placenta.

Medicine (Baltimore) 2020; 99: e22152.

19

(25)

Shynlova O, Lee YH, Srikhajon K, Lye SJ. Physiologic uterine inflammation

and labor onset integration of endocrine and mechanical signals. Reprod Sci 2013; 20:

154–167.

20

Tables

Table 1. Patient characteristics and clinical outcomes of the FIRS and non-FIRS groups

Characteristics

FIRS

Non-FIRS

p-value

Patients

36

93

N/A

Age (years)a

33

34

0.654

(22–45)

(18–47)

22.5

44.1

(20/36)

(41/93)

54.7

17.2

(11/36)

(16/93)

22.8

20.9

(16.4–43.9)

(15.2–38.6)

22.2

6.5

(8/36)

(6/93)

16.7

10.8

(6/36)

(10/93)

1.1

(0/36)

(1/93)

2.8

1.1

(1/36)

(1/93)

36.1

34.4

(13/36)

(32/93)

61.1

47.3

(22/36)

(44/93)

Primipara (%)b

IVF (%)b

BMI (kg/m2)a

GDM (%)b

HDP (%)b

Maternal fever (%)b

Fetal tachycardia (%)b

Spontaneous labor onset (%)b

CS (%)b

0.326

0.146

0.047

0.022

0.38

0.482

0.84

0.175

21

GA at delivery (weeks)a

Birth weight (g)a

Umbilical artery pHa

NICU admission (%)b

Neonatal jaundice (%)b

TTN (%)b

RDS (%)b

Respiratory support (%)b

IVH (%)b

ROP (%)b

38.4

38.3

(28.7–40.7)

(30.4–41.4)

3006

2854

(1360–3768)

(1324–3594)

7.302

7.302

(7.016–7.386)

(7.109–7.412)

27.8

26.9

(10/36)

(25/93)

13.9

9.7

(5/36)

(9/93)

8.3

11.8

(3/36)

(11/93)

2.8

1.1

(1/36)

(1/93)

16.7

12.9

(6/36)

(12/93)

2.3

(1/36)

(0/93)

2.3

(1/36)

(0/93)

The Mann–Whitney U-test was used for between-group comparisons, which are

presented as median (range).

0.282

0.343

0.795

0.533

0.756

0.482

0.58

0.279

0.279

22

Fisher’s exact test was used for between-group comparisons.†

FIRS, fetal inflammatory response syndrome; BMI, body mass index; GDM, gestational diabetes

mellitus; IVF, in vitro fertilization; CS, cesarean section; GA, gestational age; NICU, neonatal intensive

care unit; TTN, transient tachypnea of the newborn; RDS, respiratory distress syndrome; IVH,

intraventricular hemorrhage; ROP, retinopathy of prematurity.

23

Table 2. Maternal WBC and CRP levels and amniotic fluid IL-6, NGAL and L-FABP

levels in the FIRS and non-FIRS groups on univariate analysis

Data comparison

WBC (/μL)a

CRP (mg/dL)a

IL-6 (pg/mL)

NGAL

Total

(ng/mL)a

VD

CS

L-FABP (ng/ml)a

FIRS

Non-FIRS

(n=36)

(n=93)

9600

7950

(5200-22900)

(4600-19000)

0.22

0.23

(0.04–7.27)

(0.05–3.21)

22022

2282

(900.5–225145)

(627.3–77969)

581.5

244.5

(113–14700)

(65.0–3090)

1180

529.0

(230–14700)

(170–3090)

156.0

123.5

(113–5610)

(65.0–330)

2.58

2.05

(0.79–91.6)

(0.42–20.8)

p-value

0.008

0.773

<0.001

0.001

<0.001

0.006

0.232

The Mann–Whitney U test was used to compare the data between the groups, presented

as median (range).‡

WBC, white blood cell; CRP, C-reactive protein; IL, interleukin; NGAL, neutrophil

gelatinase-associated lipocalin; L-FABP, L-type fatty acid-binding protein; FIRS, fetal inflammatory

response syndrome; VD, vaginal delivery; CS, cesarean section.

24

Table 3. Maternal WBC level and amniotic fluid IL-6 and NGAL levels on multivariate

logistic regression analysis§

Data comparison

OR (95% CI)

p-value

WBC

4.02 (1.33–12.1)

0.013

IL-6

10.9 (3.41–35.0)

<0.001

NGAL

9.33 (2.86–30.4)

<0.001

§ WBC, white blood cell; IL, interleukin; NGAL, neutrophil gelatinase-associated lipocalin; OR, odds

ratio; CI, confidence interval.

25

Table 4. The relationship between amniotic fluid L-FABP levels and neonatal clinical

outcomes

Data comparison

L-FABP

p-value

control

CS (%)a

50.8

2.13

1.96

(61/120)

(0.42-24.7)

(0.57-17.3)

NICU admission

28.3

2.05

1.98

(%)a

(34/120)

(0.90-24.7)

(0.42-9.17)

Neonatal jaundice

10.8

2.69

1.97

(%)a

(13/120)

(1.06-17.3)

(0.42-24.7)

TTN (%)a

11.6

3.18

1.95

(14/120)

(1.06-24.7)

(0.42-13.9)

1.6

5.19

1.97

(2/120)

(4.07-6.31)

(0.42-24.7)

Respiratory support

14.1

4.57

1.94

(%)a

(17/120)

(0.90-24.7)

(0.42-9.17)

IVH (%)a

0.8

4.57

1.98

(1/120)

(4.57-4.57)

(0.42-24.7)

0.8

4.96

1.98

(1/120)

(4.96-4.96)

(0.42-24.7)

RDS (%)a

ROP (%)a

0.258

0.07

0.09

0.018

0.066

<0.001

0.237

0.194

26

The Mann–Whitney U-test was used for between-group comparisons, which are

presented as median (range).¶

L-FABP, L-type fatty acid-binding protein; CS, cesarean section; NICU, neonatal intensive care unit;

TTN, transient tachypnea of the newborn; RDS, respiratory distress syndrome; IVH, intraventricular

hemorrhage; ROP, retinopathy of prematurity.

27

Table 5. Maternal WBC and CRP levels and amniotic fluid IL-6, NGAL and L-FABP

levels in the spontaneous labor onset and control groups on univariate analysis

Data comparison

Spontaneous

Control

labor onset

(n=82)

p-value

(n=47)

WBC (/μL)a

CRP (mg/dL)a

IL-6 (pg/mL)a

NGAL

Total

(ng/mL)a

VD

CS

L-FABP (ng/ml)a

8700

7800

(5400-22900)

(4600-21700)

0.26

0.22

(0.05–3.21)

(0.04–7.27)

8738.4

2096.9

(737.4–225145)

(627.3–199347)

565

172.5

(142–14700)

(65.0–5610)

618

477

(170–14700)

(188–5610)

218

139

(142–3010)

(65.0–5610)

1.97

2.34

(0.79–17.3)

(0.42–91.6)

0.209

0.846

0.002

<0.001

0.411

0.013

0.512

The Mann–Whitney U-test was used for between-group comparisons, which are

presented as median (range).i

WBC, white blood cell; CRP, C-reactive protein; IL, interleukin; NGAL, neutrophil

gelatinase-associated lipocalin; L-FABP, L-type fatty acid-binding protein; FIRS, fetal inflammatory

response syndrome; VD, vaginal delivery; CS, cesarean section.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る