リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phenotypic effects of Am genomes in nascent synthetic hexaploids derived from interspecific crosses between durum and wild einkorn wheat」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phenotypic effects of Am genomes in nascent synthetic hexaploids derived from interspecific crosses between durum and wild einkorn wheat

Michikawa, Asami Okada, Moeko Ikeda, Tatsuya M. Nagaki, Kiyotaka Yoshida, Kentaro Takumi, Shigeo 京都大学 DOI:10.1371/journal.pone.0284408

2023.04

概要

Allopolyploid speciation is a major evolutionary process in wheat (Triticum spp.) and the related Aegilops species. The generation of synthetic polyploids by interspecific crosses artificially reproduces the allopolyploidization of wheat and its relatives. These synthetic polyploids allow breeders to introduce agriculturally important traits into durum and common wheat cultivars. This study aimed to evaluate the genetic and phenotypic diversity in wild einkorn Triticum monococcum ssp. aegilopoides (Link) Thell., to generate a set of synthetic hexaploid lines containing the various Am genomes from wild einkorn, and to reveal their trait characteristics. We examined the genetic diversity of 43 wild einkorn accessions using simple sequence repeat markers covering all the chromosomes and revealed two genetically divergent lineages, L1 and L2. The genetic divergence between these lineages was linked to their phenotypic divergence and their habitats. L1 accessions were characterized by early flowering, fewer spikelets, and large spikelets compared to L2 accessions. These trait differences could have resulted from adaptation to their different habitats. We then developed 42 synthetic hexaploids containing the AABBAmAm genome through interspecific crosses between T. turgidum cv. Langdon (AABB genome) as the female parent and the wild einkorn accessions (AmAm genome) as the male parents. Two of the 42 AABBAmAm synthetic hexaploids exhibited hybrid dwarfness. The phenotypic divergence between L1 and L2 accessions of wild einkorn, especially for days to flowering and spikelet-related traits, significantly reflected phenotypic differences in the synthetic hexaploids. The differences in plant height and internodes between the lineages were more distinct in the hexaploid backgrounds. Furthermore, the AABBAmAm synthetic hexaploids had longer spikelets and grains, long awns, high plant heights, soft grains, and late flowering, which are distinct from other synthetic hexaploid wheat lines such as AABBDD. Utilization of various Am genomes of wild einkorn resulted in wide phenotypic diversity in the AABBAmAm synthetic hexaploids and provides promising new breeding materials for wheat.

この論文で使われている画像

参考文献

1.

Matsuoka Y, Nasuda S. Durum wheat as a candidate for the unknown female progenitor of bread

wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet.

2004; 109: 1710–1717. https://doi.org/10.1007/s00122-004-1806-6 PMID: 15448900

2.

Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill BS. Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics. 2009; 181: 1147–

1157. https://doi.org/10.1534/genetics.108.096941 PMID: 19104075

3.

Mestiri I, Chague´ V, Tanguy A-M, Huneau C, Huteau V, Belcram H, et al. Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol. 2010; 186: 86–101. https://doi.org/10.1111/j.1469-8137.2010.03186.x PMID:

20149116

PLOS ONE | https://doi.org/10.1371/journal.pone.0284408 April 27, 2023

23 / 27

PLOS ONE

Phenotypic effects of Am genomes in nascent synthetic hexaploids from crosses between durum and wild einkorn

4.

Chague´ V, Just J, Mestiri I, Balzergue S, Tanguy A-M, Huneau C, et al. Genome-wide gene expression

changes in genetically stable synthetic and natural wheat allohexaploids. New Phytol. 2010; 187: 1181–

1194. https://doi.org/10.1111/j.1469-8137.2010.03339.x PMID: 20591055

5.

Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, et al. Persistent whole-chromosome aneuploidy is generally

associated with nascent allohexaploid wheat. Proc Natl Acad Sci U S A. 2013; 110: 3447–3452. https://

doi.org/10.1073/pnas.1300153110 PMID: 23401544

6.

Jones H, Gosman N, Horsnell R, Rose GA, Everest LA, Bentley AR, et al. Strategy for exploiting exotic

germplasm using genetic, morphological, and environmental diversity: the Aegilops tauschii Coss.

example. Theor Appl Genet. 2013; 126: 1793–1808. https://doi.org/10.1007/s00122-013-2093-x PMID:

23558983

7.

Li A, Liu D, Yang W, Kishii M, Mao L. Synthetic hexaploid wheat: yesterday, today, and tomorrow. Proc

Est Acad Sci Eng. 2018; 4: 552–558. https://doi.org/10.1016/j.eng.2018.07.001

8.

Takumi S, Mitta S, Komura S, Ikeda TM, Matsunaka H, Sato K, et al. Introgression of chromosomal segments conferring early heading date from wheat diploid progenitor, Aegilops tauschii Coss., into Japanese elite wheat cultivars. PLoS One. 2020; 15: e0228397. https://doi.org/10.1371/journal.pone.

0228397 PMID: 31986184

9.

Dvorak J, McGuire PE, Cassidy B. Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome.

1988; 30: 680–689. https://doi.org/10.1139/g88-115

10.

Volante A, Barabaschi D, Marino R, Brandolini A. Genome-wide association study for morphological,

phenological, quality, and yield traits in einkorn (Triticum monococcum L. subsp. monococcum). G3.

2021;11. https://doi.org/10.1093/g3journal/jkab281 PMID: 34849796

11.

Fricano A, Brandolini A, Rossini L, Sourdille P, Wunder J, Effgen S, et al. Crossability of Triticum urartu

and Triticum monococcum wheats, homoeologous recombination, and description of a panel of interspecific introgression lines. G3. 2014; 4: 1931–1941. https://doi.org/10.1534/g3.114.013623 PMID:

25147190

12.

Heun M, Scha¨fer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, et al. Site of einkorn wheat

domestication identified by DNA fingerprinting. Science. 1997; 278: 1312–1314. https://doi.org/10.

1126/science.278.5341.1312

13.

Kilian B, Ozkan H, Walther A, Kohl J, Dagan T, Salamini F, et al. Molecular diversity at 18 loci in 321

wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum

(Einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol. 2007; 24: 2657–2668.

https://doi.org/10.1093/molbev/msm192 PMID: 17898361

14.

Pour-Aboughadareh A, Mahmoudi M, Moghaddam M, Ahmadi J, Mehrabi AA, Alavikia SS. Agro-morphological and molecular variability in Triticum boeoticum accessions from Zagros Mountains, Iran.

Genet Resour Crop Evol. 2017; 64: 545–556. https://doi.org/10.1007/s10722-016-0381-4

15.

Ma H, Singh RP, Mujeeb-Kazi A. Resistance to stripe rust in durum wheats, A-genome diploids, and

their amphiploids. Euphytica. 1997; 94: 279–286. https://doi.org/10.1023/A:1002979706378.

16.

Rogers WJ, Rogers WJ, Miller TE, Payne PI, Seekings JA, Sayers EJ, et al. Introduction to bread wheat

(Triticum aestivum L.) and assessment for bread-making quality of alleles from T. boeoticum Boiss.

ssp. thaoudar at Glu-A1 encoding two high-molecular-weight subunits of glutenin. Euphytica. 1997; 93:

19–29. https://doi.org/10.1023/a:1002991206350

17.

Shi AN, Leath S, Murphy JP. A major gene for powdery mildew resistance transferred to common

wheat from wild einkorn wheat. Phytopathology. 1998; 88: 144–147. https://doi.org/10.1094/PHYTO.

1998.88.2.144 PMID: 18944983

18.

Anker CC, Niks RE. Prehaustorial resistance to the wheat leaf rust fungus, Puccinia triticina, in Triticum

monococcum (s.s.). Euphytica. 2001; 117: 209–215. https://doi.org/10.1023/A:1026577307163

19.

Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, et al. Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theor Appl Genet.

2008; 116: 313–324. https://doi.org/10.1007/s00122-007-0668-0 PMID: 17989954

20.

Chhuneja P, Kumar K, Stirnweis D, Hurni S, Keller B, Dhaliwal HS, et al. Identification and mapping of

two powdery mildew resistance genes in Triticum boeoticum L. Theor Appl Genet. 2012; 124: 1051–

1058. https://doi.org/10.1007/s00122-011-1768-4 PMID: 22198205

21.

Hovhannisyan NA, Dulloo ME, Yesayan AH, Knu¨pffer H, Amri A. Tracking of powdery mildew and leaf

rust resistance genes in Triticum boeoticum and T. urartu, wild relatives of common wheat. Czech J

Genet Plant Breed. 2011; 47: 45–57. https://doi.org/10.17221/127/2010-cjgpb

22.

Sultan MARF, Hui L, Yang LJ, Xian ZH. Assessment of drought tolerance of some Triticum L. species

through physiological indices. Czech J Genet Plant Breed. 2012; 48: 178–184. https://doi.org/10.17221/

21/2012-cjgpb

PLOS ONE | https://doi.org/10.1371/journal.pone.0284408 April 27, 2023

24 / 27

PLOS ONE

Phenotypic effects of Am genomes in nascent synthetic hexaploids from crosses between durum and wild einkorn

23.

Gill RS, Dhaliwal HS, Multani DS. Synthesis and evaluation of Triticum durum—T. monococcum amphiploids. Theor Appl Genet. 1988; 75: 912–916. https://doi.org/10.1007/bf00258053

24.

Megyeri M, Miko´ P, Molna´r I, Kova´cs G. Development of synthetic amphiploids based on Triticum turgidum × T. monococcum crosses to improve the adaptability of cereals. Acta Agron Hungar. 2011; 59:

267–274. https://doi.org/10.1556/aagr.59.2011.3.11

25.

Li H, Liu X, Zhang M, Feng Z, Liu D, Ayliffe M, et al. Development and identification of new synthetic T.

turgidum–T. monococcum amphiploids. Plant Genetic Resources 2018; 16: 555–563. https://doi.org/

10.1017/s1479262118000175

26.

Miko´ P, Megyeri M, Farkas A, Molna´r I, Molna´r-La´ng M. Molecular cytogenetic identification and phenotypic description of a new synthetic amphiploid, Triticum timococcum (AtAtGGAmAm). Genet Resour

Crop Evol. 2015; 62: 55–66. https://doi.org/10.1007/s10722-014-0135-0 PMID: 26412939

27.

Liu X, Yang H, Zhang M, Liu X, Peng T, Hao M, et al. Molecular cytogenetic identification of a new synthetic amphiploid (Triticum timococcum, AtAtGGAmAm) with a seed setting rate comparable with that of

natural Triticum zhukovskyi. Plant Breeding. 2022; 141: 558–565. https://doi.org/10.1111/pbr.13030

28.

Chen S, Hegarty J, Shen T, Hua L, Li H, Luo J, et al. Stripe rust resistance gene Yr34 (synonym Yr48) is

located within a distal translocation of Triticum monococcum chromosome 5AmL into common wheat.

Theor Appl Genet. 2021; 134: 2197–2211. https://doi.org/10.1007/s00122-021-03816-z PMID:

33791822

29.

Elkot AFA, Chhuneja P, Kaur S, Saluja M, Keller B, Singh K. Marker assisted transfer of two powdery

mildew resistance genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L.). PLoS One. 2015; 10: e0128297. https://doi.org/10.1371/journal.pone.0128297 PMID:

26066332

30.

Takumi S, Naka Y, Morihiro H, Matsuoka Y. Expression of morphological and flowering time variation

through allopolyploidization: an empirical study with 27 wheat synthetics and their parental Aegilops

tauschii accessions. Plant Breed. 2009; 128: 585–590. https://doi.org/10.1111/j.1439-0523.2009.

01630.x

31.

Kajimura T, Murai K, Takumi S. Distinct genetic regulation of flowering time and grain-filling period

based on empirical study of D-genome diversity in synthetic hexaploid wheat lines. Breed Sci. 2011; 61:

130–141. https://doi.org/10.1270/jsbbs.61.130

32.

Okada M, Ikeda TM, Yoshida K, Takumi S. Effect of the U genome on grain hardness in nascent synthetic hexaploids derived from interspecific hybrids between durum wheat and Aegilops umbellulata. J

Cereal Sci. 2018; 83: 153–161. https://doi.org/10.1016/j.jcs.2018.08.011

33.

Okada M, Michikawa A, Yoshida K, Nagaki K, Ikeda TM, Takumi S. Phenotypic effects of the U-genome

variation in nascent synthetic hexaploids derived from interspecific crosses between durum wheat and

its diploid relative Aegilops umbellulata. PLoS One. 2020; 15: e0231129. https://doi.org/10.1371/

journal.pone.0231129 PMID: 32240263

34.

Okamoto Y, Nguyen AT, Yoshioka M, Iehisa JCM, Takumi S. Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines. Breed Sci. 2013; 63:

423–429. https://doi.org/10.1270/jsbbs.63.423 PMID: 24399915

35.

Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum

aestivum L.). Theor Appl Genet. 2004; 109: 1105–1114. https://doi.org/10.1007/s00122-004-1740-7

PMID: 15490101

36.

Torada A, Koike M, Mochida K, Ogihara Y. SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet. 2006; 112: 1042–1051. https://doi.org/10.

1007/s00122-006-0206-5 PMID: 16450184

37.

Nishijima R, Iehisa JCM, Matsuoka Y, Takumi S. The cuticular wax inhibitor locus Iw2 in wild diploid

wheat Aegilops tauschii: phenotypic survey, genetic analysis, and implications for the evolution of common wheat. BMC Plant Biol. 2014; 14: 246. https://doi.org/10.1186/s12870-014-0246-y PMID:

25224598

38.

Kamvar ZN, Tabima JF, Gru¨nwald NJ. Poppr: an R package for genetic analysis of populations with

clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014; 2: e281. https://doi.org/10.7717/peerj.

281 PMID: 24688859

39.

Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in

R. Bioinformatics. 2019; 35: 526–528. https://doi.org/10.1093/bioinformatics/bty633 PMID: 30016406

40.

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype

data. Genetics. 2000; 155: 945–959. https://doi.org/10.1093/genetics/155.2.945 PMID: 10835412

41.

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software

STRUCTURE: a simulation study. Mol Ecol. 2005; 14: 2611–2620. https://doi.org/10.1111/j.1365294X.2005.02553.x PMID: 15969739

PLOS ONE | https://doi.org/10.1371/journal.pone.0284408 April 27, 2023

25 / 27

PLOS ONE

Phenotypic effects of Am genomes in nascent synthetic hexaploids from crosses between durum and wild einkorn

42.

Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012; 4: 359–361. https://

doi.org/10.1007/s12686-011-9548-7

43.

Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with

label switching and multimodality in analysis of population structure. Bioinformatics. 2007; 23: 1801–

1806. https://doi.org/10.1093/bioinformatics/btm233 PMID: 17485429

44.

Jiang J, Gill BS, Wang GL, Ronald PC, Ward DC. Metaphase and interphase fluorescence in situ

hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci U S

A. 1995; 92: 4487–4491. https://doi.org/10.1073/pnas.92.10.4487 PMID: 7753830

45.

Michikawa A, Yoshida K, Okada M, Sato K, Takumi S. Genome-wide polymorphisms from RNA

sequencing assembly of leaf transcripts facilitate phylogenetic analysis and molecular marker development in wild einkorn wheat. Mol Genet Genomics. 2019; 294: 1327–1341. https://doi.org/10.1007/

s00438-019-01581-9 PMID: 31187273

46.

Tanabata T, Shibaya T, Hori K, Ebana K, Yano M. SmartGrain: high-throughput phenotyping software

for measuring seed shape through image analysis. Plant Physiol. 2012; 160: 1871–1880. https://doi.

org/10.1104/pp.112.205120 PMID: 23054566

47.

Okamoto Y, Kajimura T, Ikeda TM, Takumi S. Evidence from principal component analysis for improvement of grain shape- and spikelet morphology-related traits after hexaploid wheat speciation. Genes

Genet Syst. 2012; 87: 299–310. https://doi.org/10.1266/ggs.87.299 PMID: 23412632

48.

Bu¨rkner P-C. brms: An R package for Bayesian multilevel models using Stan. J Stat Softw. 2017; 80: 1–

28. https://doi.org/10.18637/jss.v080.i01

49.

Baillot N, Girousse C, Allard V, Piquet-Pissaloux A, Le Gouis J. Different grain-filling rates explain grainweight differences along the wheat ear. PLoS One. 2018; 13: e0209597. https://doi.org/10.1371/

journal.pone.0209597 PMID: 30596702

50.

Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas.

Int J Climatol. 2017; 37: 4302–4315. https://doi.org/10.1002/joc.5086

51.

Gaines CS, Finney PF, Fleege LM, Andrews LC. Predicting a hardness measurement using the singlekernel characterization system. Cereal Chem. 1996, 73: 278–283.

52.

Zeller FJ, Cermeno MC, Miller TE. Cytological analysis on the distribution and origin of the alien chromosome pair conferring blue aleurone color in several European common wheat (Triticum aestivum L.)

strains. Theor Appl Genet. 1991; 81: 551–558. https://doi.org/10.1007/BF00219448 PMID: 24221323

53.

Zhou Y, Zhao X, Li Y, Xu J, Bi A, Kang L, et al. Triticum population sequencing provides insights into

wheat adaptation. Nat Genet. 2020; 52: 1412–1422. https://doi.org/10.1038/s41588-020-00722-w

PMID: 33106631

54.

Takumi S, Nishioka E, Morihiro H, Kawahara T, Matsuoka Y. Natural variation of morphological traits in

wild wheat progenitor Aegilops tauschii Coss. Breed Sci. 2009; 59: 579–588. https://doi.org/10.1270/

jsbbs.59.579

55.

Miki Y, Ikeda TM, Yoshida K, Takumi S. Identification of a hard kernel texture line of synthetic allohexaploid wheat reducing the puroindoline accumulation on the D genome from Aegilops tauschii. J Cereal

Sci. 2020; 93: 102964. https://doi.org/10.1016/j.jcs.2020.102964

Lachman J, Martinek P, Kotı´kova´ Z, Orsa´k M, Sˇulc M. Genetics and chemistry of pigments in wheat

grain—A review. J Cereal Sci. 2017; 74: 145–154. https://doi.org/10.1016/j.jcs.2017.02.007

56.

57.

Liu X, Zhang M, Jiang X, Li H, Jia Z, Hao M, et al. TbMYC4A is a candidate gene controlling the blue

aleurone trait in a wheat-Triticum boeoticum substitution line. Front Plant Sci. 2021; 12: 762265. https://

doi.org/10.3389/fpls.2021.762265 PMID: 34804098

58.

Shipp J, Abdel-Aal E-SM. Food applications and physiological effects of anthocyanins as functional

food ingredients. Open Food Sci J. 2010; 4: 7–22. https://doi.org/10.2174/1874256401004010007

59.

Hermsen JGT. Hybrid dwarfness in wheat. Euphytica. 1967; 16: 134–162. https://doi.org/10.1007/

BF00043448

60.

Tikhenko N, Rutten T, Tsvetkova N, Voylokov A, Bo¨rner A. Hybrid dwarfness in crosses between wheat

(Triticum aestivum L.) and rye (Secale cereale L.): a new look at an old phenomenon. Plant Biol. 2015;

17: 320–326. https://doi.org/10.1111/plb.12237 PMID: 25251214

61.

Mizuno N, Hosogi N, Park P, Takumi S. Hypersensitive response-like reaction is associated with hybrid

necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii coss. PLoS One. 2010;

5: e11326. https://doi.org/10.1371/journal.pone.0011326 PMID: 20593003

62.

Okada M, Yoshida K, Takumi S. Hybrid incompatibilities in interspecific crosses between tetraploid

wheat and its wild diploid relative Aegilops umbellulata. Plant Mol Biol. 2017; 95: 625–645. https://doi.

org/10.1007/s11103-017-0677-6 PMID: 29090430

PLOS ONE | https://doi.org/10.1371/journal.pone.0284408 April 27, 2023

26 / 27

PLOS ONE

Phenotypic effects of Am genomes in nascent synthetic hexaploids from crosses between durum and wild einkorn

63.

Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, et al. Autoimmune response as a

mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol. 2007; 5: e236.

https://doi.org/10.1371/journal.pbio.0050236 PMID: 17803357

64.

Chae E, Bomblies K, Kim S-T, Karelina D, Zaidem M, Ossowski S, et al. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell. 2014; 159: 1341–

1351. https://doi.org/10.1016/j.cell.2014.10.049 PMID: 25467443

65.

Chen C, Chen H, Lin Y-S, Shen J-B, Shan J-X, Qi P, et al. A two-locus interaction causes interspecific

hybrid weakness in rice. Nat Commun. 2014; 5: 3357. https://doi.org/10.1038/ncomms4357 PMID:

24556665

66.

Alca´zar R, von Reth M, Bautor J, Chae E, Weigel D, Koornneef M, et al. Analysis of a plant complex

resistance gene locus underlying immune-related hybrid incompatibility and its occurrence in nature.

PLoS Genet. 2014; 10: e1004848. https://doi.org/10.1371/journal.pgen.1004848 PMID: 25503786

PLOS ONE | https://doi.org/10.1371/journal.pone.0284408 April 27, 2023

27 / 27

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る