リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Genetic insights into the dissolution of dioecy in diploid persimmon Diospyros oleifera Cheng」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Genetic insights into the dissolution of dioecy in diploid persimmon Diospyros oleifera Cheng

Sun, Peng Nishiyama, Soichiro Li, Huawei Mai, Yini Han, Weijuan Suo, Yujing Liang, Chengzhi Du, Huilong Diao, Songfeng Wang, Yiru Yuan, Jiaying Zhang, Yue Tao, Ryutaro Li, Fangdong Fu, Jianmin 京都大学 DOI:10.1186/s12870-023-04610-3

2023.11.30

概要

BACKGROUND: Dioecy, a sexual system of single-sexual (gynoecious/androecious) individuals, is rare in flowering plants. This rarity may be a result of the frequent transition from dioecy into systems with co-sexual individuals. RESULTS: In this study, co-sexual expression (monoecy and hermaphroditic development), previously thought to be polyploid-specific in Diospyros species, was identified in the diploid D. oleifeara historically. We characterized potential genetic mechanisms that underlie the dissolution of dioecy to monoecy and andro(gyno)monoecy, based on multiscale genome-wide investigations of 150 accessions of Diospyros oleifera. We found all co-sexual plants, including monoecious and andro(gyno)monoecious individuals, possessed the male determinant gene OGI, implying the presence of genetic factors controlling gynoecia development in genetically male D. oleifera. Importantly, discrepancies in the OGI/MeGI module were found in diploid monoecious D. oleifera compared with polyploid monoecious D. kaki, including no Kali insertion on the promoter of OGI, no different abundance of smRNAs targeting MeGI (a counterpart of OGI), and no different expression of MeGI between female and male floral buds. On the contrary, in both single- and co-sexual plants, female function was expressed in the presence of a genome-wide decrease in methylation levels, along with sexually distinct regulatory networks of smRNAs and their targets. Furthermore, a genome-wide association study (GWAS) identified a genomic region and a DUF247 gene cluster strongly associated with the monoecious phenotype and several regions that may contribute to andromonoecy. CONCLUSIONS: Collectively, our findings demonstrate stable breakdown of the dioecious system in D. oleifera, presumably also a result of genomic features of the Y-linked region.

この論文で使われている画像

参考文献

1. Renner SS, Ricklefs RE. Dioecy and its correlates in the flowering plants.

Am J Bot. 1995;82:596–606.

2. Weiblen GD, Oyama RK, Donoghue MJ. Phylogenetic analysis of dioecy in

monocotyledons. Am Nat. 2000;155:46–58.

3. Renner SS. The relative and absolute frequencies of angiosperm sexual

systems: dioecy, monoecy, gynodioecy, and an updated online database.

Am J Bot. 2014;101:1588–96.

4. Heilbuth JC. Lower species richness in dioecious Clades. Am Nat.

2000;156(3):221–41.

5. Kafer J, Marais GAB, Pannell JR. On the rarity of dioecy in flowering plants.

Mol Ecol. 2017;26:1225–41.

6. Badouin H, Velt A, Gindraud F, Flutre T, Marais GA. The wild grape genome

sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication. Genome Biol. 2020;21(1):223–223.

7. Masuda K, Ikeda Y, Matsuura T, Kawakatsu T, Tao R, Kubo Y, Ushijima K,

Henry IM, Akagi T. Reinvention of hermaphroditism via activation of a

RADIALIS-like gene in hexaploid persimmon. Nat plants. 2022;8:217–24.

8. Akagi T, Henry IM, Tao R, Comai L. A Y-chromosome-encoded small RNA

acts as a sex determinant in persimmons. Science. 2014;346:646–50.

9. Li JR, Sun P, Han WJ, Li FD, Fu JM, Diao SF. Morphological key period study

on floral sex differentiation in pollination-constant and non-astringent

persimmon ‘Zenjimaru.’ Acta Horticulturae Sinica. 2016;43:451–61 (In

Chinese with English abstract).

10. Akagi T, Henry IM, Kawai T, Comai L, Tao R. Epigenetic regulation of

the sex determination gene MeGI in polyploid persimmon. Plant Cell.

2016;28:2905–15.

11. Wang L, Li H, Sun P, Suo Y, Han W, Diao S, Mai Y, Li F, Fu J. Efects of plant

growth regulators, soil moisture contents, and carbon/nitrogen ratios on

sex diferentiation in Persimmon (Diospyros kaki Thunb.) Flowers. J Plant

Growth Regul. 2021;40:1121–38.

12. Li H, Wang L, Mai Y, Han W, Suo Y, Diao S, Sun P, Fu J. Phytohormone and

integrated mRNA and miRNA transcriptome analyses and differentiation of male between hermaphroditic floral buds of andromonoecious

Diospyros kaki Thunb. BMC Genomics. 2021;22:203.

13. Henry IM, Akagi T, Tao R, Comai L. One hundred ways to invent the sexes:

theoretical and observed paths to dioecy in plants. Annu Rev Plant Biol.

2018;69(1):553–75.

14. Masuda K, Akagi T. Sexual system and its evolution. In: Tao R, Luo Z, editors. The Persimmon Genome. Cham: Springer Nature Switzerland AG;

2022. p. 97–108.

15. Sun P, Fu JM. A BioNano optical mapping-assisted chromosomal genome

assembly of Diospyros oleifera. figshare. Dataset. 2022a. https://​doi.​org/​10.​

6084/​m9.​figsh​are.​20101​664.​v3

16. Akagi T, Shirasawa K, Nagasaki H, Hirakawa H, Tao R, Comai L, Henry

IM. The persimmon genome reveals clues to the evolution of a

lineage-specific sex determination system in plants. PLoS Genet.

2020;16(2):e1008566.

17. Akagi T, Kawai T, Tao R. A male determinant gene in diploid dioecious

Diospyros, OGI, is required for male flower production in monoecious

individuals of Oriental persimmon (D. kaki). Sci Hortic-Amsterdam.

2016;213:243–51.

18. Gong Z, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L, Zhu JK. ROS1, a

repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA

glycosylase/lyase. Cell. 2002;111:803–14.

19. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes.

Nucleic Acids Res. 2000;28:27–30.

20. Kanehisa M. Toward understanding the origin and evolution of cellular

organisms. Protein Sci. 2019;28:1947–51.

21. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M.

KEGG for taxonomy-based analysis of pathways and genomes. Nucleic

Acids Res. 2023;51:D587–92.

22. Crossman A, Charlesworth D. Breakdown of dioecy: models where males

acquire cosexual functions. Evolution. 2014;68(2):426–40.

23. Perbal MC, Haughn G, Saedler H, Schwarz-Sommer Z. Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and

GLOBOSA is exerted by their polar cell-to-cell trafficking. Development.

1996;122(11):3433–41.

24. Müller NA, Kersten B, Montalvão APL, Mähler N, Bernhardsson C, Bräutigam K, Lorenzo ZC, Hoenicka H, Kumar V, Mader M, Pakull B, Robinson

KM, Sabatti M, Vettori C, Ingvarsson PK, Cronk Q, Street NR, Fladung M. A

Sun et al. BMC Plant Biology

25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. (2023) 23:606

single gene underlies the dynamic evolution of poplar sex determination. Nat plants. 2020;6:630–7.

Cossard GG, Gerchen JF, Li X, Cuenot Y, Pannell JR. The rapid dissolution of

dioecy by experimental evolution. Current Biol. 2021;31:1–7.

Massonnet M, Cochetel N, Minio A, et al. The genetic basis of sex determination in grapes. Nat Commun. 2020;11:2902.

VanBuren R, Zeng F, Chen C, Zhang J, Wai MC, Han J, Aryal R, Gschwend

AR, Wang J, Na JK, Huang L, Zhang L, Miao W, Gou J, Arro J, Guyot R,

Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu Q, Ming R.

Origin and domestication of papaya ­Yh chromosome. Genome Res.

2015;25(4):524–33.

Wang L, Li H, Suo Y, Han W, Diao S, Mai Y, Wang Y, Yuan J, Ye L, Pu T,

Zhang Q, Sun P, Li F, Fu J. Effects of different chemicals on sexual regulation in persimmon (Diospyros kaki Thunb.) Flowers. Front Plant Sci.

2022;13:876086.

Gubler F, Kalla R, Roberts JK, Jacobsen JV. Gibberellin-regulated

expression of a myb gene in barley aleurone cells: evidence for Myb

transactivation of a high-pI alpha-amylase gene promoter. Plant Cell.

1995;7:1879–91.

Haseneyer G, Ravel C, Dardevet M, Balfourier F, Sourdille P, Charmet G,

Brunel D, Sauer S, Geiger HH, Graner A, Stracke S. High level of conservation between genes coding for the GAMYB transcription factor in barley

(Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) collections.

Theor Appl Genet. 2008;117:321–31.

Gocal GFW, Poole AT, Gubler F, Watts RJ, Blundell C, King RW. Long-day

up-regulation of a GAMYB gene during Lolium temulentum inflorescence

formation. Plant Physiol. 1999;119:1271–8.

Murray F, Kalla R, Jacobsen J, Gubler F. A role for HvGAMYB in anther

development. Plant J. 2003;33:481–91.

Sun P, Li JR, Du GG, Han WJ, Fu JM, Diao SF, Suo YJ, Zhang Y, Li FD.

Endogenous phytohormone profiles in male and female floral buds of

the persimmons (Diospyros kaki Thunb.) during development. Sci HorticAmsterdam. 2017;218:213–21.

Li SZ, Sun P, Du GG, Wang LY, Li HW, Fu JM, Suo YJ, Han WJ, Diao SF, Mai

YN, Li FD. Transcriptome sequencing and comparative analysis between

male and female floral buds of the persimmon (Diospyros kaki Thunb.). Sci

Hortic-Amsterdam. 2019;246:987–97.

Preston JC, Hileman LC. Functional evolution in the plant SQUAMOSAPROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front Plant Sci.

2013;4:1–13.

Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D. The microRNAregulated SBP-Box transcription factor SPL3 is a direct upstream activator

of LEAFY, FRUITFULL, and APETALA1. Dev Cell. 2009;17:268–78.

Fan D, Wang X, Tang X, Ye X, Ren S, Wang D, Luo K. Histone H3K9 demethylase JMJ25 epigenetically modulates anthocyanin biosynthesis in

poplar. Plant J. 2018;96:1121–36.

Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B. Growth-regulating factors (GRFs): a small transcription factor family with important

functions in plant biology. Mol Plant. 2015;8:998–1010.

Liang G, He H, Li Y, Wang F, Yu D. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol.

2014;164:249–58.

Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and

the stress response: evolutionary and ecological physiology. Annu Rev

Physiol. 1999;61:243–82.

Harkess A, Zhou J, Xu C, Bowers JE, Van der Hulst R, Ayyampalayam S. The

asparagus genome sheds light on the origin and evolution of a young Y

chromosome. Nat Commun. 2017;8:1279.

Harkess A, Huang K, Van der Hulst R, Tissen B, Caplan JL, Koppula A, Batish M, Meyers BC, Leebens-Mackb J. Sex determination by two Y-linked

genes in garden asparagus. Plant Cell. 2020;32:1790–6.

Manzanares C, Barth S, Thorogood D, Thorogood D, Byrne SL, Yates S,

Czaban A, Asp T, Yang B, Studer B. A gene encoding a DUF247 domain

protein cosegregates with the S self-Incompatibility locus in perennial

ryegrass. Molr Biol Evol. 2016;33(4):870–84.

Thorogood D, Yates S, Manzanares C, Skot L, Hegarty M, Blackmore T,

Barth S, Studer B. A novel multivariate approach to phenotyping and

association mapping of multi-locus gametophytic self-incompatibility

reveals S, Z, and other loci in a perennial ryegrass (Poaceae) population.

Front Plant Sci. 2017;8:1331.

Valleau WD. Inheritance of sex in the grape. Am Nat. 1915;597:554–64.

Page 18 of 18

46. Fu JM, Liu HM, Hu JJ, Liang YQ, Liang JJ, Wuyun TN, Tan XF. Five complete

chloroplast genome sequences from Diospyros: genome organization

and comparative analysis. PLoS ONE. 2017;11(7):e0159566.

47. Suo YJ, Sun P, Cheng HH, Han WJ, Diao SF, Li HW, Mai YN, Zhao X, Li FD, Fu

JM. A high-quality chromosomal genome assembly of Diospyros oleifera

Cheng. GigaScience. 2020;9:1–10.

48. Li H, Durbin R. Fast and accurate long-read alignment with BurrowsWheeler transform. Bioinformatics. 2010;26:589–95.

49. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 genome project data processing subgroup. The

sequence alignment/map (SAM) format and SAMtools. Bioinformatics.

2009;25(6):2078–9.

50. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,

Li S, Yang H, Wang J, Wang J. De novo assembly of human genomes with

massively parallel short read sequencing. Genome Res. 2010;20:265–72.

51. Sun P, Fu JM. The Diospyros oleifera heterozygous and male unmapped

sequences. figshare. Dataset. 2022b. https://​doi.​org/​10.​6084/​m9.​figsh​are.​

20407​386.​v1.

52. Slifer SH. PLINK: Key Functions for data analysis. Curr Protoc Hum Genet.

2018;97:59.

53. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D.

Principal components analysis corrects for stratification in genome-wide

association studies. Nat Genet. 2006;38(8):904–9.

54. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics

analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.

55. Endelman JB. Ridge regression and other kernels for genomic selection

with R package rrBLUP. Plant Genome-US. 2011;4(3):250–5.

56. Shin J, Blay S, McNeney B, Graham J. LDheatmap: An R function for

graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J Stat Softw. 2006;16:c03.

57. Mai Y, Diao S, Yuan J, Wang L, Suo Y, Li H, Han W, Wang Y, Ye L, Liu Y, et al.

Identification and analysis of MADS-box, WRKY, NAC, and SBP-box transcription factor families in Diospyros oleifera Cheng and their associations

with sex differentiation. Agronomy-basel. 2022;12:2100.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research ? Choose BMC and benefit from:

• fast, convenient online submission

• thorough peer review by experienced researchers in your field

• rapid publication on acceptance

• support for research data, including large and complex data types

• gold Open Access which fosters wider collaboration and increased citations

• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る