リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Reversible Modulation of the Electronic and Spatial Environment around Ni(0) Centers Bearing Multifunctional Carbene Ligands with Triarylaluminum」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Reversible Modulation of the Electronic and Spatial Environment around Ni(0) Centers Bearing Multifunctional Carbene Ligands with Triarylaluminum

Yamauchi, Yasuhiro 大阪大学

2023.07.19

概要

Designing the spatial environment around a metal center is a
critical issue in terms of the electronic and steric properties and
hence the reactivity of organometallic complexes. Chemists
have thus focused on the design of the structural, electronic,
and dynamic properties of supported ligands, as demonstrated
in the field of, e.g., homogeneous catalysis,1−6 supramolecular
chemistry,7,8 and materials science.9 One well-known strategy
for reversibly modulating the electronic and spatial environment around metal centers is based on a ligand-substitution
process on metal centers bearing multifunctional ligands
including a hemilabile coordination moiety (L′) in the
presence of an external Lewis base (LB) (Figure 1A,
left).10−14 However, these processes often yield an equilibrium
mixture that is difficult to separate. In this context, we have
reported the reversible, recyclable, and pressure-responsive
room-temperature-chemisorption of carbon monoxide (CO)
on a zerovalent nickel complex that bears multifunctional
multipurpose carbene ligands,14 namely N-phosphine oxidesubstituted imidazolinylidenes (SPoxIms) and the corresponding imidazolylidenes (PoxIms) (Figure 1B, left).15,16 (S)PoxIm
© 2023 The Authors. ...

この論文で使われている画像

参考文献

We thank T. Honma (Japan Synchrotron Radiation Research

Institute), S. Yamashita (High Energy Accelerator Research

Organization), and H. Iwayama (Institute for Molecular

Science) for their support of the XAS experiments. Ni Kedge XAS measurements were performed at the BL14B2

beamline of SPring-8 with the approval of the Japan

Synchrotron Radiation Research Institute (proposal no.

2020A1871, 2021A1630, 2022A1767, and 2022A1784). Ni

L2,3-edge XAS measurements were performed at the BL-19B

beamline of KEK under the approval of the Photon Factory

Program Advisory Committee (proposal no. 2022P013), and

at the BL4B beamline of the UVSOR Synchrotron Facility with

the approval of Institute for Molecular Science (proposal no.

21-697). This project was supported by Grants-in-Aid for

Scientific Research (C) (21K05070 to Y.H. and 22K05095 to

Y.U.), Grants-in-Aid for Transformative Research Area (A)

Digitalization-driven Transformative Organic Synthesis

(22H05363 to Y.H.), and JST FOREST Program

(JPMJFR2222 to Y.H.). Part of this work was supported by

JST SPRING (grant JPMJSP2138 to Y.Y.). Part of the

computation was performed using resources from the Research

Center for Computational Science, Okazaki, Japan (Project:

22-IMS-C107).

Full details pertaining to the experimental methods,

identification of the compounds, and DFT calculations.

(PDF)

Accession Codes

CCDC 2263787−2263791, 2269436−2269437, and 2269439

contain the supplementary crystallographic data for this paper.

These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.

cam.ac.uk, or by contacting The Cambridge Crystallographic

Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax:

+44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Yuta Uetake − Department of Applied Chemistry, Faculty of

Engineering, Osaka University, Suita, Osaka 565-0871,

Japan; Innovative Catalysis Science Division, Institute for

Open and Transdisciplinary Research Initiatives (ICSOTRI), Osaka University, Suita, Osaka 565-0871, Japan;

orcid.org/0000-0002-4742-8085; Email: uetake@

chem.eng.osaka-u.ac.jp

Sensuke Ogoshi − Department of Applied Chemistry, Faculty

of Engineering, Osaka University, Suita, Osaka 565-0871,

Japan; orcid.org/0000-0003-4188-8555;

Email: ogoshi@chem.eng.osaka-u.ac.jp

Yoichi Hoshimoto − Department of Applied Chemistry,

Faculty of Engineering, Osaka University, Suita, Osaka 5650871, Japan; Center for Future Innovation (CFi), Division of

Applied Chemistry, Faculty of Engineering, Osaka University,

Suita, Osaka 565-0871, Japan; orcid.org/0000-00030882-6109; Email: hoshimoto@chem.eng.osaka-u.ac.jp

(1) Wu, K.; Doyle, A. G. Parameterization of phosphine ligands

demonstrates enhancement of nickel catalysis via remote steric effects.

Nat. Chem. 2017, 9, 779−784.

(2) Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.; Oliva, R.;

Scarano, V.; Cavallo, L. Towards the online computer-aided design of

catalytic pockets. Nat. Chem. 2019, 11, 872−879.

(3) Durand, D. J.; Fey, N. Computational Ligand Descriptors for

Catalyst Design. Chem. Rev. 2019, 119, 6561−6594.

(4) Zhang, Z.; Shao, Y.; Tang, J.; Jiang, J.; Wang, L.; Li, S.

Supramolecular asymmetric catalysis mediated by crown ethers and

related recognition systems. Green Synth. Catal. 2021, 2, 156−164.

16945

https://doi.org/10.1021/jacs.3c06267

J. Am. Chem. Soc. 2023, 145, 16938−16947

Journal of the American Chemical Society

pubs.acs.org/JACS

(5) Trouvé, J.; Gramage-Doria, R. Beyond hydrogen bonding: recent

trends of outer sphere interactions in transition metal catalysis. Chem.

Soc. Rev. 2021, 50, 3565−3584.

(6) Blanco, V.; Leigh, D. A.; Marcos, V. Artificial switchable

catalysts. Chem. Soc. Rev. 2015, 44, 5341−5370.

(7) Miller, A. J. M. Controlling ligand binding for tunable and

switchable catalysis: cation-modulated hemilability in pincer-crown

ether ligands. Dalton Trans. 2017, 46, 11987−12000.

(8) Yoo, C.; Dodge, H. M.; Miller, A. J. M. Cation-controlled

catalysis with crown ether-containing transition metal complexes.

Chem. Commun. 2019, 55, 5047−5059.

(9) Peris, E. Smart N-Heterocyclic Carbene Ligands in Catalysis.

Chem. Rev. 2018, 118, 9988−10031.

(10) Braunstein, P.; Naud, F. Hemilability of Hybrid Ligands and

the Coordination Chemistry of Oxazoline-Based Systems. Angew.

Chem., Int. Ed. 2001, 40, 680−699.

(11) Fliedel, C.; Schnee, G.; Braunstein, P. Versatile coordination

modes of novel hemilabile S-NHC ligands. Dalton Trans. 2009,

2474−2476.

(12) Liang, Q.; Janes, T.; Gjergji, X.; Song, D. Iron complexes of a

bidentate picolyl-NHC ligand: synthesis, structure and reactivity.

Dalton Trans. 2016, 45, 13872−13880.

(13) Mondal, M.; Ranjeesh, T. K.; Gupta, S. K.; Choudhury, J.

Labile coordination approach for the modulation of the electronic

properties of ruthenium(II) and iridium(III) complexes within an “Nheterocyclic carbene (NHC)−pyridyl” dynamic platform. Dalton

Trans. 2014, 43, 9356−9362.

(14) Yamauchi, Y.; Hoshimoto, Y.; Kawakita, T.; Kinoshita, T.;

Uetake, Y.; Sakurai, H.; Ogoshi, S. Room-Temperature Reversible

Chemisorption of Carbon Monoxide on Nickel(0) Complexes. J. Am.

Chem. Soc. 2022, 144, 8818−8826.

(15) Hoshimoto, Y.; Kinoshita, T.; Ohashi, M.; Ogoshi, S. A

Strategy to Control the Reactivation of Frustrated Lewis Pairs from

Shelf-Stable Carbene Borane Complexes. Angew. Chem., Int. Ed. 2015,

54, 11666−11671.

(16) Hoshimoto, Y.; Ogoshi, S. Development of Metal Complexes

Equipped with Structurally Flexible Carbenes. Bull. Chem. Soc. Jpn.

2021, 94, 327−338.

(17) For examples on LA-mediated reversible electronic modulation

on metal centers, see: (a) Lee, B. Y.; Bazan, G. C.; Vela, J.; Komon, Z.

J. A.; Bu, X. α-Iminocarboxamidato−Nickel(II) Ethylene Polymerization Catalysts. J. Am. Chem. Soc. 2001, 123, 5352−5353. (b) Kim,

Y. H.; Kim, T. H.; Lee, B. Y.; Woodmansee, D.; Bu, X.; Bazan, G. C.

α-Iminoenamido Ligands: A Novel Structure for Transition-Metal

Activation. Organometallics 2002, 21, 3082−3084. (c) Hesp, K. D.;

McDonald, R.; Ferguson, M. J.; Schatte, G.; Stradiotto, M. (κ2P,S)Pt(benzyl) complexes derived from 1/3-PiPr2-2-StBu-indene:

facile synthesis of carbanion- and borate-containing zwitterions.

Chem. Commun. 2008, 5645−5647. (d) Hesp, K. D.; McDonald, R.;

Ferguson, M. J.; Stradiotto, M. New Cationic and Zwitterionic

Cp*M(κ2-P,S) Complexes (M = Rh, Ir): Divergent Reactivity

Pathways Arising from Alternative Modes of Ancillary Ligand

Participation in Substrate Activation. J. Am. Chem. Soc. 2008, 130,

16394−16406. (e) Azoulay, J. D.; Rojas, R. S.; Serrano, A. V.; Ohtaki,

H.; Galland, G. B.; Wu, G.; Bazan, G. C. Nickel α-Keto-β-Diimine

Initiators for Olefin Polymerization. Angew. Chem., Int. Ed. 2009, 48,

1089−1092. (f) Azoulay, J. D.; Koretz, Z. A.; Wu, G.; Bazan, G. C.

Well-Defined Cationic Methallyl α-Keto-β-Diimine Complexes of

Nickel. Angew. Chem., Int. Ed. 2010, 49, 7890−7894. (g) Trofymchuk,

O. S.; Gutsulyak, D. V.; Quintero, C.; Parvez, M.; Daniliuc, C. G.;

Piers, W. E.; Rojas, R. S. N-Arylcyano-β-diketiminate Methallyl Nickel

Complexes: Synthesis, Adduct Formation, and Reactivity toward

Ethylene. Organometallics 2013, 32, 7323−7333. (h) Tseng, K. -N. T.;

Kampf, J. W.; Szymczak, N. K. Regulation of Iron-Catalyzed Olefin

Hydroboration by Ligand Modifications at a Remote Site. ACS Catal.

2015, 5, 411−415. (i) Lambic, N. S.; Brown, C. A.; Sommer, R. D.;

Ison, E. A. Dramatic Increase in the Rate of Olefin Insertion by

Coordination of Lewis Acids to the Oxo Ligand in Oxorhenium(V)

Hydrides. Organometallics 2017, 36, 2042−2051. (j) Geri, J. B.;

Article

Shanahan, J. P.; Szymczak, N. K. Testing the Push-Pull Hypothesis:

Lewis Acid Augmented N2 Activation at Iron. J. Am. Chem. Soc. 2017,

139, 5952−5956. (k) Goudy, V.; Jaoul, A.; Cordier, M.; Clavaguéra,

C.; Nocton, G. Tuning the Stability of Pd(IV) Intermediates Using a

Redox Noninnocent Ligand Combined with an Organolanthanide

Fragment. J. Am. Chem. Soc. 2017, 139, 10633−10636. (l) Shanahan,

J. P.; Szymczak, N. K. Lewis Acid Effects on Calculated Ligand

Electronic Parameters. Organometallics 2020, 39, 4297−4306.

(m) Schmid, L.; Chábera, O.; Rüter, I.; Prescimone, A.; Meyer, F.;

Yartsev, A.; Persson, P.; Wenger, O. S. Borylation in the Second

Coordination Sphere of FeII Cyanido Complexes and Its Impact on

Their Electronic Structures and Excited-State Dynamics. Inorg. Chem.

2022, 61, 15853−15863.

(18) For selected examples on LA-mediated ligand substitution

reaction, see: (a) Liberman-Martin, A. L.; Levine, D. S.; Liu, W.;

Bergman, R. G.; Tilley, T. D. Biaryl Reductive Elimination Is

Dramatically Accelerated by Remote Lewis Acid Binding to a 2,2’Bipyrimidyl-Platinum Complex: Evidence for a Bidentate Ligand

Dissociation Mechanism. Organometallics 2016, 35, 1064−1069.

(b) Warioba, C. S.; Jackson, L. G.; Neal, M. A.; Haines, B. E.

Computational Study on the Role of Zn(II) Z-Type Ligands in

Facilitating Diaryl Reductive Elimination from Pt(II). Organometallics

2023, 42, 16−26.

(19) For an example on proton-mediated electronic mudulation, see:

Brennan, C.; Draksharapu, A.; Browne, W. R.; McGarvey, J. J.; Vos, J.

G.; Pryce, M. T. Unexpected reversible pyrazine based methylation in

a Ru(II) complex bearing a pyrazin-2’-yl-1,2,4-triazolato ligand and its

effect on acid/base and photophysical properties. Dalton Trans. 2013,

42, 2546−2555.

(20) For examples on proton-mediated ligand alternation reaction,

see: (a) Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Kasuga,

K. Simultaneous Tuning of Activity and Water Solubility of Complex

Catalysts by Acid-Base Equilibrium of Ligands for Conversion of

Carbon Dioxide. Organometallics 2007, 26, 702−712. (b) Hashiguchi,

B. G.; Young, K. J. H.; Yousufuddin, M.; Goddard, W. A., III; Periana,

R. A. Acceleration of Nucleophilic CH Activation by Strongly Basic

Solvents. J. Am. Chem. Soc. 2010, 132, 12542−12545. (c) Dixon, N.

A.; McQuarters, A. B.; Kraus, J. S.; Soffer, J. B.; Lehnert, N.;

Schweitzer-Stenner, R.; Papish, E. T. Dramatic tuning of ligand donor

properties in (Ttz)CuCO through remote binding of H+ (Ttz =

hydrotris(triazolyl)borate). Chem. Commun. 2013, 49, 5571−5573.

(21) Acosta-Calle, S.; Miller, A. J. M. Tunable and Switchable

Catalysis Enabled by Cation-Controlled Gating with Crown Ether

Ligands. Acc. Chem. Res. 2023, 56, 971−981.

(22) van der Ham, A.; Hansen, T.; Lodder, G.; Codée, J. D. C.;

Hamlin, T. A.; Filippov, D. V. Computational and NMR Studies on

the Complexation of Lithium Ion to 8-Crown-4. ChemPhysChem

2019, 20, 2103−2109.

(23) Ouyang, G.-H.; He, Y.-M.; Li, Y.; Xiang, J.-F.; Fan, Q.-H.

Cation-Triggered Switchable Asymmetric Catalysis with Chiral AzaCrownPhos. Angew. Chem., Int. Ed. 2015, 54, 4334−4337.

(24) Asada, T.; Hoshimoto, Y.; Ogoshi, S. Rotation-Triggered

Transmetalation on a Heterobimetallic Cu/Al N-Phosphine-OxideSubstituted Imidazolylidene Complex. J. Am. Chem. Soc. 2020, 142,

9772−9784.

(25) Branzi, L.; Baron, M.; Armelao, L.; Rancan, M.; Sgarbossa, P.;

Graiff, C.; Pöthig, A.; Biffis, A. Coordination chemistry of gold with

N-phosphine oxide-substituted imidazolylidenes (POxIms). New J.

Chem. 2019, 43, 17275−17283.

(26) Dorta, R.; Stevens, E. D.; Hoff, C. D.; Nolan, S. P. Stable,

Three-Coordinate Ni(CO)2(NHC) (NHC = N-Heterocyclic Carbene) Complexes Enabling the Determination of Ni-NHC Bond

Energies. J. Am. Chem. Soc. 2003, 125, 10490−10491.

(27) Dorta, R.; Stevens, E. D.; Scott, N. M.; Costabile, C.; Cavallo,

L.; Hoff, C. D.; Nolan, S. P. Steric and Electronic Properties of NHeterocyclic Carbenes (NHC): A Detailed Study on Their

Interaction with Ni(CO)4. J. Am. Chem. Soc. 2005, 127, 2485−2495.

(28) A set of (Ra) and (Sa) atropisomers of 3a were identified in the

asymmetric unit of the single crystal, as bulky Al(C6F5)3 would inhibit

16946

https://doi.org/10.1021/jacs.3c06267

J. Am. Chem. Soc. 2023, 145, 16938−16947

Journal of the American Chemical Society

pubs.acs.org/JACS

the rotation of the N-phosphinoyl moiety upon complexation and

induce N−P axial chirality. For details on complexation-induced N−P

axial chirality, see: (a) Kinoshita, T.; Sakuraba, M.; Hoshimoto, Y.;

Ogoshi, S. Complexation between MOTf (M = Li and Na) and NPhosphine Oxide-substituted Imidazolylidenes via Coordination of

the N-Phosphoryl Group. Chem. Lett. 2019, 48, 230−233. (b) Asada,

T.; Hoshimoto, Y.; Kawakita, T.; Kinoshita, T.; Ogoshi, S. Axial

Chirality around N-P Bonds Induced by Complexation between

E(C6F5)3 (E = B, Al) and an N-Phosphine Oxide-Substituted

Imidazolinylidene: A Key Intermediate in the Catalytic Phosphinoylation of CO2. J. Org. Chem. 2020, 85, 14333−14341. (c) Hoshimoto,

Y.; Yamauchi, Y.; Terada, T.; Ogoshi, S. Complexation-Induced N-P

Axial Chirality in Sm(II) N-Phosphine-Oxide-Substituted Imidazolylidene and Imidazolinylidene Complexes. Can. J. Chem. 2023, 101,

429−433.

(29) Kumar, P S. V.; Raghavendra, V.; Subramanian, V. Bader’s

Theory of Atoms in Molecules (AIM) and its Applications to

Chemical Bonding. J. Chem. Sci. 2016, 128, 1527−1536.

(30) Macchi, P.; Sironi, A. Chemical bonding in transition metal

carbonyl clusters: complementary analysis of theoretical and

experimental electron densities. Coord. Chem. Rev. 2003, 238−239,

383−412.

(31) He, W.; Beattie, D. D.; Zhou, H.; Bowes, E. G.; Schafer, L. L.;

Love, J. A.; Kennepohl, P. Direct metal−carbon bonding in symmetric

bis(C−H) agostic nickel(I) complexes. Chem. Sci. 2021, 12, 15298−

15307.

(32) Bistoni, G.; Rampino, S.; Scafuri, N.; Ciancaleoni, G.;

Zuccaccia, D.; Belpassi, L.; Tarantelli, F. How π back-donation

quantitatively controls the CO stretching response in classical and

nonclassical metal carbonyl complexes. Chem. Sci. 2016, 7, 1174−

1184.

(33) Gómez-Suárez, A.; Nelson, D. J.; Nolan, S. P. Quantifying and

understanding the steric properties of N-heterocyclic carbenes. Chem.

Commun. 2017, 53, 2650−2660.

(34) Heully, J.-L.; Lindgren, I.; Lindroth, E.; Lundqvist, S.;

Mårtensson-Pendrill, A.-M. Diagonalisation of the Dirac Hamiltonian

as a basis for a relativistic many-body procedure. J. Phys. B: At. Mol.

Phys. 1986, 19, 2799−2815.

(35) Chang, C.; Pelissier, M.; Durand, P. Regular Two-Component

Pauli-Like Effective Hamiltonians in Dirac Theory. Phys, Scr. 1986,

34, 394−404.

(36) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic

regular two-component Hamiltonians. J. Chem. Phys. 1993, 99, 4597−

4610.

(37) DiMucci, I. M.; Lukens, J. T.; Chatterjee, S.; Carsch, K. M.;

Titus, C. J.; Lee, S. J.; Nordlund, D.; Betley, T. A.; MacMillan, S. N.;

Lancaster, K. M. The Myth of d8 Copper(III). J. Am. Chem. Soc. 2019,

141, 18508−18520.

(38) A bonding interaction between Ni(CO)4 and Lewis-acidic

centers at the surface of γ-Al2O3 has already been investigated; for

details, see: Rao, K. M.; Spoto, G.; Zecchina, A. IR Investigation of

Ni(CO)4 Interaction with Silicalite, ZSM-5, Zeolite-Y, and γ -Al2O3.

Langmuir 1989, 5, 319−325.

(39) For the isolation of a Ni complex including a CO−Li+

interaction, see: Hou, H.; Rheingold, A. L.; Kubiak, C. P. An Anionic

Zerovalent Nickel Carbonyl Complex Supported by a Triphosphine

Borate Ligand: An Ni-C≡O-Li Isocarbonyl. Organometallics 2005, 24,

231−233.

(40) For the formation of Lewis adducts between M−CO units and

Lewis-acidic species, see: (a) Kotz, J. C.; Turnipseed, C. D. Evidence

for the Interaction of Trimethylalane with the Oxygen Atom of a

Terminal Metal Carbonyl Group. Chem. Commun. 1970, 41−42.

(b) Burlitch, J. M.; Petersen, R. B. Variable site of Lewis basicity of πC5H5W(CO)3− in complexes with (C6H5)3In and (C6H5)3Al. J.

Organomet. Chem. 1970, 24, C65−C67. (c) Petersen, R. B.;

Stezowski, J. J.; Wan, C.; Burlitch, J. M.; Hughes, R. E. A Novel

Metal-Carbonyl-Metal Bonding System. Synthesis and Stereochemistry of Al[W(CO)3C5H5]3(C4H8O)3. J. Am. Chem. Soc. 1971, 93,

3532−3533. (d) Ulmer, S. W.; Skarstad, P. M.; Burlitch, J. M.;

Article

Hughes, R. E. Synthesis, Stereochemistry, and Bonding of

Tetrapyridinemagnesium(II)

Bis(πcyclopentadienyltricarbonylmolybdate(-I)) and Related Compounds.

J. Am. Chem. Soc. 1973, 95, 4469−4471. (e) Darensbourg, M. Y.;

Jimenez, P.; Sackett, J. R.; Hanckel, J. M.; Kump, R. L. Interactions of

CpM’(CO)3− (M’ = Cr, Mo, W) with Cations: Effects on CO

Exchange and RX Addition Reactions. J. Am. Chem. Soc. 1982, 104,

1521−1530. (f) Zhuang, B.; Sun, H.; He, L.; Zhou, Z.; Lin, C.; Wu,

K.; Huang, Z. Synthesis, structure and possible formation pathway of

a novel cobalt carbonyl compound with new type B-O bond,

Co(CO)3(PPh3)2BEt3, and mixed metal Co-Fe-S cluster with possible

nonlinear optical property, [Et4N][CoFe2(CO)8S(PPh3)]. J. Organomet. Chem. 2002, 655, 233−238. (g) García, F.; Hopkins, A. D.;

Kowenicki, R. A.; McPartlin, M.; Rogers, M. C.; Silvia, J. S.; Wright,

D. S. Syntheses and Structure of Heterometallic Complexes

Containing Tripodal Group 13 Ligands [RE(2-py)3]− (E = Al, In).

Organometallics 2006, 25, 2561−2568. (h) Fuchs, J.; Irran, E.;

Hrobárik, P.; Klare, H. F. T.; Oestreich, M. Si-H Bond Activation with

Bullock’s Cationic Tungsten(II) Catalyst: CO as Cooperating Ligand.

J. Am. Chem. Soc. 2019, 141, 18845−18850. (i) Tinnermann, H.;

Sung, S.; Csókás, D.; Toh, Z. H.; Fraser, C.; Young, R. D. Alkali Metal

Adducts of an Iron(0) Complex and Their Synergistic FLP-Type

Activation of Aliphatic C-X Bonds. J. Am. Chem. Soc. 2021, 143,

10700−10708. (j) Fritz, M.; Demeshko, S.; Würtele, C.; Finger, M.;

Schneider, S. Linearly Bridging N2 versus CO: Chemical Bonding and

Spin-Controlled Reactivity. Eur. J. Inorg. Chem. 2023, 26,

No. e202300011.

Recommended by ACS

Ligand Redox Activity of Organonickel Radical Complexes

Governed by the Geometry

Gregory A. Dawson, Tianning Diao, et al.

SEPTEMBER 11, 2023

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ

Nickelacarborane-Supported Bis-N-heterocyclic Carbenes

Runxia Nan, Xu-Qiong Xiao, et al.

JULY 06, 2023

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ

Remote Steric and Electronic Effects of N-Heterocyclic

Carbene Ligands on Alkene Reactivity and Regioselectivity

toward Hydrocupration Reactions: The Role of Expanded...

Aqeel A. Hussein and Azhar Ariffin

AUGUST 31, 2023

THE JOURNAL OF ORGANIC CHEMISTRY

READ

Unexplored Facet of Pincer Ligands: Super-Reductant

Behavior Applied to Transition-Metal-Free Catalysis

Vikramjeet Singh, Debashis Adhikari, et al.

APRIL 10, 2023

JACS AU

READ

Get More Suggestions >

16947

https://doi.org/10.1021/jacs.3c06267

J. Am. Chem. Soc. 2023, 145, 16938−16947

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る