リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fast solar wind driven by parametric decay instability and Alfvén wave turbulence」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fast solar wind driven by parametric decay instability and Alfvén wave turbulence

庄田, 宗人 東京大学 DOI:10.15083/0002001896

2021.10.04

概要

A continuous injection of energy and momentum is required to sustain the high-temperature corona and high-speed solar wind. A widely accepted idea is that the origin of such en- ergy and momentum lies in the convective motion of the solar surface (photosphere) and the magnetic field transports them to upper atmosphere via Alfve´n wave, which is called Alfve´n-wave modeling or Alfve´n wave scenario of the (fast) solar wind. Although the general framework of Alfve´n-wave modeling is, at least theoretically, of little doubt, the detailed physics inside is yet controversial. Specifically, the thermalization mechanism of Alfve´n wave in the corona and solar wind is unclear. Bearing in mind that the (magnetic) Reynolds number is quite large, turbulence and resultant cascading are required to obtain adequate heating.

A standard model, called reflection-driven Alfve´n wave turbulence model, assumes that inward Alfve´n waves generated by a partial reflection in the solar wind collide with outward Alfve´n waves, triggering Alfve´n wave turbulence to heat the solar wind. One problem that recently arose regarding this model is that the heating rate is insufficient. Therefore, we need to revisit and modify the standard model, incorporating new physics. The standard model is based on reduced MHD equations in which compressional waves are ruled out. We assume that the shortage of heating is attributed to neglecting compressional waves. An overall motivation of this thesis is to update the standard model including compressional waves. Permission of compressibility is crucial in the solar wind, where plasma beta is low, because parametric decay instability works with a comparable time scale to Alfve´n wave turbulence. For this purpose, we have performed two different simulations: one-dimensional and three-dimensional simulations.

In Chapter 3, we report the results of one-dimensional simulations. To consider the turbulent heating in one-dimensional geometry, we introduce a phenomenological tur- bulence model of Alfve´n wave turbulence into compressible MHD equations. The tur- bulence model is set so that it becomes equivalent with commonly used Alfve´n wave turbulence model in the limit of incompressibility. In the limit of infinite turn over time of turbulence, this model is identical to the previous work without turbulence. We have found that the dominant heating process in the solar wind is correlation-length depen- dent; with small correlation length most of the heating is by turbulence and with large correlation length shock heating is dominant. With the realistic correlation length, the turbulence is slightly stronger than shock. Using parameter survey, we have revealed sev- eral conclusions. First, the solar wind velocity is strongly affected by correlation length while the magnitude of energy injection determines the mass-loss rate. This result is con- sistent with previous works. Second, the observed large density fluctuation in the solar wind acceleration region is explained by parametric decay instability. Specifically, the largest-density-fluctuation region is the same as the largest-growth-rate region of para- metric decay instability. Third, the cross-helicity evolution is explained based on linear reflection. These indicate that parametric decay instability plays a crucial role in the solar wind acceleration region but not in the distant solar wind.

In Chapter 4, we show the results of the three-dimensional simulation, the motivations of which are to validate the 1D model and to predict the data of Parker Solar Probe. Our simulation is the first-ever three-dimensional self-consistent simulation of the solar wind acceleration. Large density fluctuation is generated by parametric decay instability in the wind acceleration region consistently with 1D simulation. The turbulence in the solar wind is characterized by an imbalanced MHD turbulence in which the power spectra of outward and inward waves have different power indices. As a prediction of Parker Solar Probe, we have shown that the positive correlation between density and parallel-velocity fluctuations would be observed.

As a conclusion of this thesis, we propose an updated standard model of the solar wind acceleration: the PDI-driven Alfve´n wave turbulence model. Alfve´n wave reflection, the source of turbulence in the solar wind, is triggered not only by simple linear refection but also by the parametric decay instability. The compressible waves plays a crucial role in the solar wind turbulence and therefore is never ignorable in the simulation.

参考文献

Alazraki, G., & Couturier, P. 1971, A&A, 13, 380

Alfve´n, H. 1947, MNRAS, 107, 211

An, C.-H., Suess, S. T., Moore, R. L., & Musielak, Z. E. 1990, ApJ, 350, 309

Arge, C. N., & Pizzo, V. J. 2000, J. Geophys. Res., 105, 10465 Bale, S. D., et al. 2016, Space Sci. Rev., 204, 49

Banerjee, D., Pe´rez-Sua´rez, D., & Doyle, J. G. 2009, A&A, 501, L15 Banerjee, D., Teriaca, L., Doyle, J. G., & Wilhelm, K. 1998, A&A, 339, 208

Bavassano, B., Dobrowolny, M., Mariani, F., & Ness, N. F. 1982, J. Geophys. Res., 87, 3617

Bavassano, B., Pietropaolo, E., & Bruno, R. 2000, J. Geophys. Res., 105, 15959 Belcher, J. W. 1971, ApJ, 168, 509

Belcher, J. W., & Davis, Jr., L. 1971, J. Geophys. Res., 76, 3534 Belcher, J. W., & MacGregor, K. B. 1976, ApJ, 210, 498 Beresnyak, A., & Lazarian, A. 2008, ApJ, 682, 1070

Berger, T. E., Schrijver, C. J., Shine, R. A., Tarbell, T. D., Title, A. M., & Scharmer, G.1995, ApJ, 454, 531

Berger, T. E., & Title, A. M. 2001, ApJ, 553, 449

Biermann, L. 1957, The Observatory, 77, 109

Boldyrev, S., & Perez, J. C. 2009, Physical Review Letters, 103, 225001 Bowen, T. A., Badman, S., Hellinger, P., & Bale, S. D. 2018, ApJ, 854, L33

Breech, B., Matthaeus, W. H., Minnie, J., Bieber, J. W., Oughton, S., Smith, C. W., & Isenberg, P. A. 2008, Journal of Geophysical Research (Space Physics), 113, A08105

Bretherton, F. P., & Garrett, C. J. R. 1968, Proceedings of the Royal Society of London Series A, 302, 529

Brun, A. S., & Browning, M. K. 2017, Living Reviews in Solar Physics, 14, 4 Bruno, R., & Carbone, V. 2013, Living Reviews in Solar Physics, 10, 2 Buchlin, E., & Velli, M. 2007, ApJ, 662, 701

Carbone, V., Marino, R., Sorriso-Valvo, L., Noullez, A., & Bruno, R. 2009, Physical Review Letters, 103, 061102

Carlsson, M., & Stein, R. F. 1992, ApJ, 397, L59—. 1997, ApJ, 481, 500

Chandran, B. D. G. 2008, ApJ, 685, 646

Chandran, B. D. G., Dennis, T. J., Quataert, E., & Bale, S. D. 2011, ApJ, 743, 197 Chandran, B. D. G., & Hollweg, J. V. 2009, ApJ, 707, 1659

Chapman, S., & Zirin, H. 1957, Smithsonian Contributions to Astrophysics, 2, 1

Chitta, L. P., van Ballegooijen, A. A., Rouppe van der Voort, L., DeLuca, E. E., & Kariyappa, R. 2012, ApJ, 752, 48

Cho, J., & Lazarian, A. 2003, MNRAS, 345, 325

Coleman, Jr., P. J. 1968, ApJ, 153, 371

Coles, W. A., & Harmon, J. K. 1989, ApJ, 337, 1023

Cranmer, S. R. 2004, in ESA Special Publication, Vol. 575, SOHO 15 Coronal Heating, ed. R. W. Walsh, J. Ireland, D. Danesy, & B. Fleck, 154

Cranmer, S. R. 2009, Living Reviews in Solar Physics, 6, 3

Cranmer, S. R., Gibson, S. E., & Riley, P. 2017, Space Sci. Rev., 212, 1345

Cranmer, S. R., Matthaeus, W. H., Breech, B. A., & Kasper, J. C. 2009, ApJ, 702, 1604 Cranmer, S. R., & Saar, S. H. 2011, ApJ, 741, 54

Cranmer, S. R., & van Ballegooijen, A. A. 2005, ApJS, 156, 265—. 2012, ApJ, 754, 92

Cranmer, S. R., van Ballegooijen, A. A., & Edgar, R. J. 2007, ApJS, 171, 520

Dahlburg, R. B., Einaudi, G., Taylor, B. D., Ugarte-Urra, I., Warren, H. P., Rappazzo,A. F., & Velli, M. 2016, ApJ, 817, 47

De Pontieu, B., et al. 2007, Science, 318, 1574

Dedner, A., Kemm, F., Kro¨ner, D., Munz, C.-D., Schnitzer, T., & Wesenberg, M. 2002, Journal of Computational Physics, 175, 645

Del Zanna, L., Matteini, L., Landi, S., Verdini, A., & Velli, M. 2015, Journal of Plasma Physics, 81, 325810102

Del Zanna, L., Velli, M., & Londrillo, P. 2001, A&A, 367, 705 Derby, Jr., N. F. 1978, ApJ, 224, 1013

Dewar, R. L. 1970, Physics of Fluids, 13, 2710

Dmitruk, P., Matthaeus, W. H., Milano, L. J., Oughton, S., Zank, G. P., & Mullan, D. J.2002, ApJ, 575, 571

Dobrowolny, M., Mangeney, A., & Veltri, P. 1980, Physical Review Letters, 45, 144 Durney, B. R. 1972, J. Geophys. Res., 77, 4042

Durney, B. R., & Hundhausen, A. J. 1974, J. Geophys. Res., 79, 3711 Edle´n, B. 1943, ZAp, 22, 30

Elliott, H. A., Henney, C. J., McComas, D. J., Smith, C. W., & Vasquez, B. J. 2012, Journal of Geophysical Research (Space Physics), 117, A09102

Elsa¨sser, W. M. 1950, Physical Review, 79, 183

Esser, R., Fineschi, S., Dobrzycka, D., Habbal, S. R., Edgar, R. J., Raymond, J. C., Kohl,J. L., & Guhathakurta, M. 1999, ApJ, 510, L63 Ferraro, C. A., & Plumpton, C. 1958, ApJ, 127, 459 Fox, N. J., et al. 2016, Space Sci. Rev., 204, 7

Fujiki, K., Tokumaru, M., Iju, T., Hakamada, K., & Kojima, M. 2015, Sol. Phys., 290, 2491

Gallet, F., & Bouvier, J. 2013, A&A, 556, A36—. 2015, A&A, 577, A98

Ghosh, S., & Goldstein, M. L. 1994, J. Geophys. Res., 99, 13

Ghosh, S., Vinas, A. F., & Goldstein, M. L. 1994, J. Geophys. Res., 99, 19 Goldreich, P., & Sridhar, S. 1995, ApJ, 438, 763

Goldstein, M. L. 1978, ApJ, 219, 700

Gombosi, T. I., van der Holst, B., Manchester, W. B., & Sokolov, I. V. 2018, ArXiv e-prints

Grappin, R., Velli, M., & Mangeney, A. 1993, Physical Review Letters, 70, 2190

Hahn, M., D’Huys, E., & Savin, D. W. 2018, ApJ, 860, 34 Hahn, M., & Savin, D. W. 2013, ApJ, 776, 78

Hammer, R. 1982, ApJ, 259, 779

Hansteen, V. H., & Leer, E. 1995, J. Geophys. Res., 100, 21577 Hansteen, V. H., & Velli, M. 2012, Space Sci. Rev., 172, 89

Harmon, J. K., & Coles, W. A. 2005, Journal of Geophysical Research (Space Physics), 110, A03101

Hartle, R. E., & Sturrock, P. A. 1968, ApJ, 151, 1155 Heinemann, M., & Olbert, S. 1980, J. Geophys. Res., 85, 1311 Heyvaerts, J., & Priest, E. R. 1983, A&A, 117, 220

Hollweg, J. V. 1974, J. Geophys. Res., 79, 3845—. 1976, J. Geophys. Res., 81, 1649—. 1984, Sol. Phys., 91, 269—. 1986, J. Geophys. Res., 91, 4111

Hollweg, J. V., & Isenberg, P. A. 2007, Journal of Geophysical Research (Space Physics), 112, 8102

Hollweg, J. V., Jackson, S., & Galloway, D. 1982, Sol. Phys., 75, 35 Holzer, T. E., & Leer, E. 1980, J. Geophys. Res., 85, 4665

Hossain, M., Gray, P. C., Pontius, Jr., D. H., Matthaeus, W. H., & Oughton, S. 1995, Physics of Fluids, 7, 2886

Iijima, H., & Yokoyama, T. 2015, ApJ, 812, L30—. 2017, ArXiv e-prints

Iroshnikov, P. S. 1964, Soviet Ast., 7, 566

Jacques, S. A. 1977, ApJ, 215, 942

Johnstone, C. P. 2017, A&A, 598, A24

Kanoh, R., Shimizu, T., & Imada, S. 2016, ApJ, 831, 24 Kasper, J. C., et al. 2016, Space Sci. Rev., 204, 131

Kojima, M., Breen, A. R., Fujiki, K., Hayashi, K., Ohmi, T., & Tokumaru, M. 2004, Journal of Geophysical Research (Space Physics), 109, A04103

Kopp, R. A., & Holzer, T. E. 1976, Sol. Phys., 49, 43 Kraichnan, R. H. 1965, Physics of Fluids, 8, 1385

Kudoh, T., & Shibata, K. 1999, ApJ, 514, 493

Lamy, P., Quemerais, E., Llebaria, A., Bout, M., Howard, R., Schwenn, R., & Simnett, G. 1997, in ESA Special Publication, Vol. 404, Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity, ed. A. Wilson, 491

Landi, E. 2008, ApJ, 685, 1270

Leer, E., & Holzer, T. E. 1980, J. Geophys. Res., 85, 4681

Lionello, R., Velli, M., Downs, C., Linker, J. A., Mikic´, Z., & Verdini, A. 2014, ApJ, 784, 120

Magyar, N., Van Doorsselaere, T., & Goossens, M. 2017, Scientific Reports, 7, 14820 Malara, F., Primavera, L., & Veltri, P. 2000, Physics of Plasmas, 7, 2866

Malara, F., & Velli, M. 1996, Physics of Plasmas, 3, 4427

Marsch, E., & Tu, C.-Y. 1990, J. Geophys. Res., 95, 11945

Matsumoto, T. 2018, MNRAS, 476, 3328

Matsumoto, T., & Kitai, R. 2010, ApJ, 716, L19 Matsumoto, T., & Shibata, K. 2010, ApJ, 710, 1857 Matsumoto, T., & Suzuki, T. K. 2012, ApJ, 749,. 2014, MNRAS, 440, 971

Matt, S., & Pudritz, R. E. 2008, ApJ, 678, 1109

Matt, S. P., MacGregor, K. B., Pinsonneault, M. H., & Greene, T. P. 2012, ApJ, 754, L26 Matthaeus, W. H., Zank, G. P., Oughton, S., Mullan, D. J., & Dmitruk, P. 1999, ApJ, 523,L93

McComas, D. J., et al. 2016, Space Sci. Rev., 204, 187

McIntosh, S. W., de Pontieu, B., Carlsson, M., Hansteen, V., Boerner, P., & Goossens, M.2011, Nature, 475, 477

Meyer, C. D., Balsara, D. S., & Aslam, T. D. 2012, MNRAS, 422, 2102—. 2014, Journal of Computational Physics, 257, 594

Miyamoto, M., et al. 2014, ApJ, 797, 51

Miyoshi, T., & Kusano, K. 2005, Journal of Computational Physics, 208, 315 Moll, R., Cameron, R. H., & Schu¨ssler, M. 2012, A&A, 541, A68

Okamoto, T. J., & De Pontieu, B. 2011, ApJ, 736, L24 Osterbrock, D. E. 1961, ApJ, 134, 347

Oughton, S., Matthaeus, W. H., Dmitruk, P., Milano, L. J., Zank, G. P., & Mullan, D. J.2001, ApJ, 551, 565

Parker, E. N. 1958, ApJ, 128, 664—. 1965, Space Sci. Rev., 4, 666

Perez, J. C., & Chandran, B. D. G. 2013, ApJ, 776, 124

Perez, J. C., Mason, J., Boldyrev, S., & Cattaneo, F. 2012, Physical Review X, 2, 041005 Perkins, F. 1973, ApJ, 179, 637

Podesta, J. J., Roberts, D. A., & Goldstein, M. L. 2007, ApJ, 664, 543 Politano, H., & Pouquet, A. 1998, Geophys. Res. Lett., 25, 273

Raymond, J. C., McCauley, P. I., Cranmer, S. R., & Downs, C. 2014, ApJ, 788, 152 Reimers, D. 1975, Memoires of the Societe Royale des Sciences de Liege, 8, 369 Re´ville, V., Anna, T., & Marco, V. 2018, ArXiv e-prints

Re´ville, V., & Brun, A. S. 2017, ApJ, 850, 45

Re´ville, V., Brun, A. S., Matt, S. P., Strugarek, A., & Pinto, R. F. 2015, ApJ, 798, 116 Roe, P. L. 1986, Annual Review of Fluid Mechanics, 18, 337

Sagdeev, R. Z., & Galeev, A. A. 1969, Nonlinear Plasma Theory Sakurai, T. 1985, A&A, 152, 121

Schatten, K. H., Wilcox, J. M., & Ness, N. F. 1969, Sol. Phys., 6, 442 Schro¨der, K.-P., & Cuntz, M. 2005, ApJ, 630, L73

See, V., et al. 2018, MNRAS, 474, 536

Sharma, P., & Hammett, G. W. 2007, Journal of Computational Physics, 227, 123 Shiota, D., Zank, G. P., Adhikari, L., Hunana, P., Telloni, D., & Bruno, R. 2017, ApJ,837, 75

Shoda, M., & Yokoyama, T. 2016, ApJ, 820, 123—. 2018a, ApJ, 859, L17—. 2018b, ApJ, 854, 9

Shoda, M., Yokoyama, T., & Suzuki, T. K. 2018a, ApJ, 853, 190—. 2018b, ApJ, 860, 17

Shu, C.-W., & Osher, S. 1988, Journal of Computational Physics, 77, 439 Spangler, S. R. 2002, ApJ, 576, 997

Spitzer, L., & Ha¨rm, R. 1953, Physical Review, 89, 977 Srivastava, A. K., et al. 2017, Scientific Reports, 7, 43147

Steiner, O., Grossmann-Doerth, U., Kno¨lker, M., & Schu¨ssler, M. 1998, ApJ, 495, 468 Stribling, T., & Matthaeus, W. H. 1991, Physics of Fluids B, 3, 1848

Sturrock, P. A., & Hartle, R. E. 1966, Physical Review Letters, 16, 628 Suresh, A., & Huynh, H. T. 1997, Journal of Computational Physics, 136, 83 Suzuki, T. K. 2006, ApJ, 640, L75—. 2018, PASJ, 70, 34

Suzuki, T. K., Imada, S., Kataoka, R., Kato, Y., Matsumoto, T., Miyahara, H., & Tsuneta,S. 2013, PASJ, 65, 98

Suzuki, T. K., & Inutsuka, S.-i. 2005, ApJ, 632, L49

Suzuki, T. K., & Inutsuka, S.-I. 2006, Journal of Geophysical Research (Space Physics), 111, 6101

Suzuki, T. K., Lazarian, A., & Beresnyak, A. 2007, ApJ, 662, 1033

Tenerani, A., & Velli, M. 2013, Journal of Geophysical Research (Space Physics), 118, 7507—. 2017, ApJ, 843, 26

Teriaca, L., Poletto, G., Romoli, M., & Biesecker, D. A. 2003, ApJ, 588, 566 Thompson, K. W. 1987, Journal of Computational Physics, 68, 1

Thurgood, J. O., Morton, R. J., & McLaughlin, J. A. 2014, ApJ, 790, L2 Tian, H., et al. 2014, ApJ, 786, 137

Tsuneta, S., et al. 2008, ApJ, 688, 1374

Usmanov, A. V., Matthaeus, W. H., Breech, B. A., & Goldstein, M. L. 2011, ApJ, 727, 84 Usmanov, A. V., Matthaeus, W. H., Goldstein, M. L., & Chhiber, R. 2018, ApJ, 865, 25 van Ballegooijen, A. A., & Asgari-Targhi, M. 2016, ApJ, 821, 106—. 2017, ApJ, 835, 10

van Ballegooijen, A. A., Asgari-Targhi, M., Cranmer, S. R., & DeLuca, E. E. 2011, ApJ, 736, 3

van Ballegooijen, A. A., Nisenson, P., Noyes, R. W., Lo¨fdahl, M. G., Stein, R. F., Nord- lund, A˚ ., & Krishnakumar, V. 1998, ApJ, 509, 435

van der Holst, B., Sokolov, I. V., Meng, X., Jin, M., Manchester, IV, W. B., To´th, G., & Gombosi, T. I. 2014, ApJ, 782, 81

van Leer, B. 1979, Journal of Computational Physics, 32, 101 Velli, M. 1993, A&A, 270, 304—. 1994, ApJ, 432, L55

Velli, M., Grappin, R., & Mangeney, A. 1989, Physical Review Letters, 63, 1807

Verdini, A., Grappin, R., Hellinger, P., Landi, S., & Mu¨ller, W. C. 2015, ApJ, 804, 119 Verdini, A., Grappin, R., Pinto, R., & Velli, M. 2012a, ApJ, 750, L33

Verdini, A., Grappin, R., & Velli, M. 2012b, A&A, 538, A70 Verdini, A., & Velli, M. 2007, ApJ, 662, 669

Verdini, A., Velli, M., Matthaeus, W. H., Oughton, S., & Dmitruk, P. 2010, ApJ, 708,L116

von Steiger, R., et al. 2000, J. Geophys. Res., 105, 27217 Vourlidas, A., et al. 2016, Space Sci. Rev., 204, 83 Wang, Y.-M., & Sheeley, Jr., N. R. 1990, ApJ, 355, 726 Weber, E. J., & Davis, Jr., L. 1967, ApJ, 148, 217

Wilhelm, K., Marsch, E., Dwivedi, B. N., Hassler, D. M., Lemaire, P., Gabriel, A. H., & Huber, M. C. E. 1998, ApJ, 500, 1023

Withbroe, G. L. 1988, ApJ, 325, 442

Withbroe, G. L., & Noyes, R. W. 1977, ARA&A, 15, 363 Wood, B. E. 2004, Living Reviews in Solar Physics, 1, 2

Wood, B. E., Mu¨ller, H.-R., Redfield, S., & Edelman, E. 2014, ApJ, 781, L33 Wood, B. E., Mu¨ller, H.-R., Zank, G. P., & Linsky, J. L. 2002, ApJ, 574, 412 Zangrilli, L., Poletto, G., Nicolosi, P., Noci, G., & Romoli, M. 2002, ApJ, 574, 477

Zank, G. P., Adhikari, L., Hunana, P., Shiota, D., Bruno, R., & Telloni, D. 2017, ApJ, 835, 147

Zank, G. P., Adhikari, L., Hunana, P., Tiwari, S. K., Moore, R., Shiota, D., Bruno, R., & Telloni, D. 2018, ApJ, 854, 32

Zhou, Y., & Matthaeus, W. H. 1990, J. Geophys. Res., 95, 10291

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る