リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Numerical Study on Synchrotron Maser Emission and Associated Particle Acceleration in Relativistic Shocks」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Numerical Study on Synchrotron Maser Emission and Associated Particle Acceleration in Relativistic Shocks

岩本, 昌倫 東京大学 DOI:10.15083/0002004726

2022.06.22

概要

Relativistic shocks are ubiquitous in the Universe as a consequence of interaction between relativistic plasma outflow and interstellar medium, in which synchrotron maser instability produces intense electromagnetic precursor waves. Particles are reflected off the shock-compressed magnetic field and start gyrating. A ring-like momentum distribution of electrons is naturally formed at the shock front and induce the instability. The synchrotron maser emission from relativistic shocks is newly suggested as the emission mechanism of fast radio bursts and attracts more attention from astrophysics. Furthermore, recent one-dimensional simulations of relativistic shocks show that longitudinal electrostatic waves, which are called wakefields, are induced in the wake of the large-amplitude electromagnetic waves via parametric decay instability and that nonthermal particles are generated during the nonlinear collapse of the wakefields. This particle acceleration may explain the origin of ultra-high-energy cosmic rays, which is a long-standing problem in astrophysics.

Although the synchrotron maser instability in the context of relativistic shocks are important for the coherent emission from astrophysical sources and cosmic ray acceleration, it has so far been discussed solely with one-dimensional simulations. In multidimensional systems, inhomogeneity such as Weibel instability can appear in the transverse direction of the shock and disturb the ring distribution of electrons in the shock transition. Consequently, the wave emission may be inefficient or completely shut off. In addition, the wakefield amplitude may not be sufficiently large to affect the incoming particles because the ponderomotive force exerted by the large-amplitude electromagnetic precursor waves may decrease due to the oblique propagation. Earlier two-dimensional simulations of relativistic shocks indeed demonstrated that the precursor waves were seen only in the initial phase and that the nonthermal particles are not generated. These results are in clear contrast to the previous one-dimensional simulations. However, according to our numerical convergence study, the spatial resolution used in the earlier two-dimensional simulations is insufficient for an accurate estimate of the synchrotron maser emission because the precursor waves are high-frequency electromagnetic waves. In addition, the application of digital filtering used to suppress the numerical Cherenkov instability may filter both physical and unphysical electromagnetic waves and underestimate the wave emission efficiency. Therefore, the previous two-dimensional simulations are numerically inadequate to treat the synchrotron maser emission and the particle acceleration in multidimensional relativistic shocks.

In this thesis, by using numerically accurate simulations, we correctly evaluated the synchrotron maser emission in two-dimensional relativistic shocks. Our simulations of pair shocks showed that the large-amplitude precursor waves continue to persist with substantial amplitude, even at a considerably low magnetization rate, where the Weibel instability dominated the shock transition. Synchrotron maser instability can coexist with Weibel instability because the typical scale is much larger than that of the Weibel instability at low magnetization. We investigated the dependence of upstream magnetic field orientations and confirmed that the intense precursor wave is generated regardless of the magnetic field configuration. This result strongly indicate that the intense coherent emission is intrinsic to relativistic shocks. In ion-electron plasmas, the wave amplitude is significantly enhanced by a positive feedback process associated with ion–electron coupling through the wakefields for high magnetization. The wakefields collapse during the nonlinear process of the parametric decay instability in the near-upstream region, where both ions and electrons are accelerated by the motional electric field in the upstream and produce clear nonthermal tails in the particle energy spectra measured in the upstream rest frame. On the basis of the simulation results, we discuss the applicability of the synchrotron maser emission and the particle acceleration for the high-energy astrophysical objects.

参考文献

A. Aab, P. Abreu, M. Aglietta, et al. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory. The Astrophysical Journal, 804(1):15, 2015. doi: 10.1088/0004-637X/804/1/15.

A. Aab, P. Abreu, M. Aglietta, et al. Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 ev. Science, 357(6357):1266–1270, sep 2017. doi: 10.1126/science.aan4338.

A. Aab, P. Abreu, M. Aglietta, , et al. An indication of anisotropy in arrival directions of ultra-high-energy cosmic rays through comparison to the flux pattern of extragalactic gamma-ray sources. The Astrophysical Journal Letters, 853(2):L29, feb 2018. doi: 10.3847/2041-8213/aaa66d.

M. Aartsen, M. Ackermann, J. Adams, et al. Astrophysical neutrinos and cosmic rays observed by icecube. Advances in Space Research, 62(10):2902–2930, 2018a. doi: 10.1016/j.asr.2017.05.030.

M. G. Aartsen, M. Ackermann, J. Adams, et al. Neutrino emission from the direction of the blazar txs 0506+056 prior to the icecube-170922a alert. Science, 361(6398): 147–151, 2018b. doi: 10.1126/science.aat2890.

R. U. Abbasi, M. Abe, T. Abu-Zayyad, et al. Indications of intermediate-scale anisotropy of cosmic rays with energy greater than 57 Eev in the northern sky measured with the surface detector of the Telescope Array Experiment. The Astrophysical Journal, 790 (2):L21, 2014. doi: 10.1088/2041-8205/790/2/L21.

A. A. Abdo, M. Ackermann, M. Ajello, et al. The first catalog of active galactic nuclei detected by the Fermi large area telescope. The Astrophysical Journal, 715(1):429–457, 2010a. doi: 10.1088/0004-637X/715/1/429.

A. A. Abdo, M. Ackermann, M. Ajello, et al. Fermi large area telescope first source catalog. The Astrophysical Journal Supplement Series, 188(2):405–436, 2010b. doi: 10.1088/0067-0049/188/2/405.

J. Abraham, P. Abreu, M. Aglietta, et al. Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science, 318(5852):938–943, 2007. doi: 10.1126/science.1151124.

J. Abraham, P. Abreu, M. Aglietta, et al. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astroparticle Physics, 29(3):188–204, 2008. doi: 10.1016/j.astropartphys.2008.01.002.

J. Abraham, P. Abreu, M. Aglietta, and othera. Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory. Physics Letters B, 685 (4-5):239–246, 2010. doi: 10.1016/j.physletb.2010.02.013.

A. Achterberg, J. Wiersma, and C. A. Norman. The weibel instability in relativistic plasmas. Astronomy and Astrophysics, 475(1):19–36, 2007. doi: 10.1051/0004-6361:20065365.

M. Ackermann, M. Ajello, K. Asano, et al. Fermi-LAT observations of the gamma-ray burst GRB 130427A. Science, 343(6166):42–47, 2014. doi: 10.1126/science.1242353.

E. Amato and J. Arons. Heating and nonthermal particle acceleration in relativistic, transverse magnetosonic shock waves in proton-electron-positron plasmas. The Astrophysical Journal, 653(1):325–338, 2006. doi: 10.1086/508050.

W. Baade and F. Zwicky. Remarks on super-novae and cosmic rays. Physical Review, 46 (1):76–77, 1934. doi: 10.1103/PhysRev.46.76.2.

A. Bamba, R. Yamazaki, T. Yoshida, T. Terasawa, and K. Koyama. Small-scale structure of non-thermal X-rays in historical SNRs. Advances in Space Research, 37(8):1439–1442, 2006. doi: 10.1016/j.asr.2005.08.011.

H. C. Barr, P. Mason, and D. M. Parr. Electron parametric instabilities of relativistically intense laser light in under and overdense plasma. Physics of Plasmas, 7(6):2604–2615, 2000. doi: 10.1063/1.874102.

M. C. Begelman and J. G. Kirk. Shock-drift particle acceleration in superluminal shocks- a model for hot spots in extragalactic radio sources. The Astrophysical Journal, 353: 66–80, 1990. doi: 10.1086/168590.

A. R. Bell. The acceleration of cosmic rays in shock fronts - I. Monthly Notices of the Royal Astronomical Society, 182(2):147–156, 1978. doi: 10.1093/mnras/182.2.147.

A. M. Beloborodov. A Flaring Magnetar in FRB 121102? The Astrophysical Journal, 843(2):L26, 2017. doi: 10.3847/2041-8213/aa78f3.

R. Blandford and D. Eichler. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Physics Reports, 154(1):1–75, 1987. doi: 10.1016/0370-1573(87)90134-7.

R. D. Blandford and J. P. Ostriker. Particle acceleration by astrophysical shocks. The Astrophysical Journal, 221:L29, 1978. doi: 10.1086/182658.

O. Buneman. Instability, Turbulence, and Conductivity in Current-Carrying Plasma. Physical Review Letters, 1(1):8–9, 1958. doi: 10.1103/PhysRevLett.1.8.

P. Chang, A. Spitkovsky, and J. Arons. Long-term evolution of magnetic turbulence in relativistic collisionless shocks: electron-positron plasmas. The Astrophysical Journal, 674:378–387, 2008. doi: 10.1086/524764.

P. Chen, T. Tajima, and Y. Takahasi. Plasma wakefield acceleration for ultrahigh-energy cosmic rays. Physical Review Letters, 89(16):161101, 2002. doi: 10.1103/PhysRevLett.89.161101.

J. F. Drake, P. K. Kaw, Y. C. Lee, G. Schmid, C. S. Liu, and M. N. Rosenbluth. Parametric instabilities of electromagnetic waves in plasmas. Physics of Fluids, 14(4):778, 1974. doi: 10.1063/1.1694789.

L. O. Drury. An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Reports on Progress in Physics, 46(8):973–1027, 1983. doi: 10.1088/0034-4885/46/8/002.

G. Ellis. The Radio Emissions from Jupiter and the Density of Jovian Exosphere. Australian Journal of Physics, 16(1):74, 1963. doi: 10.1071/PH630074.

H. Falcke and L. Rezzolla. Fast radio bursts: the last sign of supramassive neutron stars. Astronomy & Astrophysics, 562:A137, 2014.

E. Fermi. On the Origin of the Cosmic Radiation. Physical Review, 75(8):1169–1174, 1949. doi: 10.1103/PhysRev.75.1169.

B. D. Fried. Mechanism for instability of transverse plasma waves. Physics of Fluids, 2: 337, 1959. doi: 10.1063/1.1705933.

Y. A. Gallant, M. Hoshino, A. B. Langdon, J. Arons, and C. E. Max. Relativistic, perpendicular shocks in electron-positron plasmas. The Astrophysical Journal, 391: 73–101, 1992. doi: 10.1086/171326.

G. B. Gelmini. High energy cosmic rays. Journal of Physics: Conference Series, 171: 012012, 2009. doi: 10.1088/1742-6596/171/1/012012.

B. B. Godfrey. Numerical cherenkov instabilities in electromagnetic particle codes. Journal of Computational Physics, 15(4):504–521, 1974. doi: 10.1016/0021-9991(74)90076-X.

B. B. Godfrey and J. L. Vay. Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirkepov algorithm. Journal of Computational Physics, 248:33–46, 2013. doi: 10.1016/j.jcp.2013.04.006.

P. Goldreich and D. Lynden-Bell. Io, a jovian unipolar inductor. The Astrophysical Journal, 156(9):59, 1969. doi: 10.1086/149947.

K. Greisen. End to the cosmic-ray spectrum? Physical Review Letters, 16(17):748–750, 1966. doi: 10.1103/PhysRevLett.16.748.

D. A. Gurnett. The Earth as a radio source: Terrestrial kilometric radiation. Journal of Geophysical Research, 79(28):4227–4238, 1974. doi: 10.1029/JA079i028p04227.

E. A. Helder, J. Vink, C. G. Bassa, A. Bamba, J. A. M. Bleeker, S. Funk, P. Ghavamian, K. J. van der Heyden, F. Verbunt, and R. Yamazaki. Measuring the cosmic-ray acceleration efficiency of a supernova remnant. Science, 325(5941):719–722, 2009. doi: 10.1126/science.1173383.

A. M. Hillas. The origin of ultra-high-energy cosmic rays. Annual Review of Astronomy and Astrophysics, 22(1):425–444, 1984. doi: 10.1146/annurev.aa.22.090184.002233.

M. Hoshino. Wakefield acceleration by radiation pressure in relativistic shock waves. The Astrophysical Journal, 672:940–956, 2008. doi: 10.1086/523665.

M. Hoshino and J. Arons. Preferential positron heating and acceleration by synchrotron maser instabilities in relativistic positron-electron-proton plasmas. Physics of Fluids B, 3(3):818–833, 1991. doi: 10.1063/1.859877.

M. Hoshino, J. Arons, Y. A. Gallant, and A. B. Langdon. Relativistic magnetosonic shock waves in synchrotron sources - shock structure and nonthermal acceleration of positrons. The Astrophysical Journal, 390:454–479, 1992. doi: 10.1086/171296.

N. Ikeya and Y. Matsumoto. Stability property of numerical cherenkov radiation and its application to relativistic shock simulations. Publications of the Astronomical Society of Japan, 67(4):64, 2015. doi: 10.1093/pasj/psv052.

J. R. Jokipii, J. Kóta, and J. Giacalone. Perpendicular transport in 1- and 2-dimensional shock simulations. Geophysical Research Letters, 20(17):1759–1761, sep 1993. doi: 10.1029/93GL01973.

F. C. Jones, J. R. Jokipii, and M. G. Baring. Charged-particle motion in electromagnetic fields having at least one ignorable spatial coordinate. The Astrophysical Journal, 509 (1):238–243, dec 1998. doi: 10.1086/306480.

K.-H. Kampert and P. Tinyakov. Cosmic rays from the ankle to the cutoff. Comptes Rendus Physique, 15(4):318–328, 2014. doi: 10.1016/j.crhy.2014.04.006.

Y. Kaneko, R. D. Preece, M. S. Briggs, W. S. Paciesas, C. A. Meegan, and D. L. Band. The complete spectral catalog of bright batse gamma-ray bursts. The Astrophysical Journal Supplement Series, 166(1):298–340, 2006. doi: 10.1086/505911.

T. N. Kato. Relativistic collisionless shocks in unmagnetized electron-positron plasmas. The Astrophysical Journal, 668:974–979, 2007. doi: 10.1086/521297.

T. N. Kato. Energy loss of high-energy particles in particle-in-cell simulation. arXiv, 2013. URL http://arxiv.org/abs/1312.5507.

T. N. Kato and H. Takabe. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation. Physics of Plasmas, 17(3):032114, 2010. doi: 10.1063/1.3372138.

J. I. Katz. Coherent emission in fast radio bursts. Physical Review D, 89(10):103009, 2014. doi: 10.1103/PhysRevD.89.103009.

P. K. Kaw, G. Schmid, and T. Wilcox. Filamentation and trapping of electromagnetic radiation in plasmas. Physics of Fluids, 16(9):1522, 1973. doi: 10.1063/1.1694552.

K. I. Kellermann and I. I. K. Pauliny-Toth. The Spectra of Opaque Radio Sources. The Astrophysical Journal, 155:L71, 1969. doi: 10.1086/180305.

K. Koyama, R. Petre, E. V. Gotthelf, U. Hwang, M. Matsuura, M. Ozaki, and S. S. Holt. Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature, 378(6554):255–258, 1995. doi: 10.1038/378255a0.

W. L. Kruer. The Physics of Laser Plasma Interactions. Addison-Wesley, Boston, 1988.

Y. Kuramitsu, Y. Sakawa, T. Kato, H. Takabe, and M. Hoshino. Nonthermal acceleration of charged particles due to an incoherent wakefield induced by a large-amplitude light pulse. The Astrophysical Journal, 682:113–116, 2008. doi: 10.1086/591247.

Y. Kuramitsu, N. Nakanii, K. Kondo, Y. Sakawa, Y. Mori, E. Miura, K. Tsuji, K. Kimura, S. Fukumochi, M. Kashihara, et al. Model experiment of cosmic ray acceleration due to an incoherent wakefield induced by an intense laser pulse. Physics of Plasmas, 18(1): 010701, jan 2011a. doi: 10.1063/1.3528434.

Y. Kuramitsu, N. Nakanii, K. Kondo, Y. Sakawa, Y. Mori, E. Miura, K. Tsuji, K. Kimura, S. Fukumochi, M. Kashihara, et al. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse. Physical Review E, 83(2):026401, feb 2011b. doi: 10.1103/PhysRevE.83.026401.

Y. Kuramitsu, Y. Sakawa, M. Hoshino, S. H. Chen, and H. Takabe. On the universality of nonthermal electron acceleration due to quasi-turbulent wakefields. High Energy Density Physics, 8(3):266–270, sep 2012. doi: 10.1016/j.hedp.2012.03.016.

A. B. Langdon, J. Arons, and C. E. Max. Magnetosonic shocks in electron-positron plasmas. Physical Review Letters, 61:779–782, 1988. doi: 10.1103/PhysRevLett.61.779.

L. Lee, J. Kan, and C. Wu. Generation of auroral kilometric radiation and the structure of auroral acceleration region. Planetary and Space Science, 28(7):703–711, 1980. doi: 10.1016/0032-0633(80)90115-4.

M. Lemoine and G. Pelletier. Dispersion and thermal effects on electromagnetic instabilities in the precursor of relativistic shocks. Monthly Notices of the Royal Astronomical Society, 417(2):1148–1161, 2011. doi: 10.1111/j.1365-2966.2011.19331.x.

M. L. Lister, M. F. Aller, H. D. Aller, D. C. Homan, K. I. Kellermann, Y. Y. Kovalev, A. B. Pushkarev, J. L. Richards, E. Ros, and T. Savolainen. MOJAVE. XIII. parsec-scale AGN jet kinematics analysis based on 19 years of VLBA observations at 15 GHz. The Astrophysical Journal, 152(1):12, 2016. doi: 10.3847/0004-6256/152/1/12.

Y. L. Liu, Y. Kuramitsu, T. Moritaka, and S. H. Chen. Transition from coherent to incoherent acceleration of nonthermal relativistic electron induced by an intense light pulse. High Energy Density Physics, 22:46–50, mar 2017. doi: 10.1016/j.hedp.2017.02.006.

Y. L. Liu, Y. Kuramitsu, S. Isayama, and S. H. Chen. Radiation pressure injection in laser-wakefield acceleration. Physics of Plasmas, 25(1):013110, jan 2018. doi: 10.1063/1.5006325.

Y. L. Liu, S. Isayama, S. H. Chen, and Y. Kuramitsu. Nonthermal relativistic electron acceleration due to laser-induced incoherent wakefields with external static magnetic fields. High Energy Density Physics, 31:64–69, 2019. doi: 10.1016/j.hedp.2019.03.004.

D. R. Lorimer, M. Bailes, M. A. McLaughlin, D. J. Narkevic, and F. Crawford. A Bright Millisecond Radio Burst of Extragalactic Origin. Science, 318(5851):777–780, 2007. doi: 10.1126/science.1147532.

Y. Lyubarsky. Electron-ion coupling upstream of relativistic collisionless shocks. The Astrophysical Journal, 652:1297–1305, 2006. doi: 10.1086/508606.

Y. Lyubarsky. A model for fast extragalactic radio bursts. Monthly Notices of the Royal Astronomical Society: Letters, 442(1):L9–L13, may 2014. ISSN 1745-3925. doi: 10.1093/mnrasl/slu046.

B. Margalit, B. D. Metzger, and L. Sironi. Constraints on the Engines of Fast Radio Bursts. arXiv, 000:1–19, 2019. URL http://arxiv.org/abs/1911.05765.

A. P. Marscher, S. G. Jorstad, F. D. D’Arcangelo, and othrs. The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst. Nature, 452(7190):966–969, 2008. doi: 10.1038/nature06895.

S. Matsukiyo and T. Hada. Parametric instabilities of circularly polarized Alfvén waves in a relativistic electron-positron plasma. Physical Review E, 67(4):046406, apr 2003. ISSN 1063-651X. doi: 10.1103/PhysRevE.67.046406.

S. Matsukiyo and M. Scholer. On microinstabilities in the foot of high mach number perpendicular shocks. Journal of Geophysical Research, 111(A6):A06104, 2006. doi: 10.1029/2005JA011409.

Y. Matsumoto, T. Amano, and M. Hoshino. Electron acceleration in a nonrelativistic shock with very high Alfvén Mach number. Physical Review Letters, 111(21):215003, 2013. doi: 10.1103/PhysRevLett.111.215003.

Y. Matsumoto, T. Amano, T. N. Kato, and M. Hoshino. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave. Science, 347(6225): 974–978, 2015. doi: 10.1126/science.1260168.

J. May, J. Tonge, I. Ellis, W. B. Mori, F. Fiuza, R. A. Fonseca, L. O. Silva, and C. Ren. Enhanced stopping of macro-particles in particle-in-cell simulations. Physics of Plasmas, 21(5):052703, 2014. doi: 10.1063/1.4875708.

D. B. Melrose. Coherent emission mechanisms in astrophysical plasmas. Reviews of Modern Plasma Physics, 1(1):5, 2017. doi: 10.1007/s41614-017-0007-0.

D. B. Melrose, K. G. Rönnmark, and R. G. Hewitt. Terrestrial kilometric radiation: The cyclotron theory. Journal of Geophysical Research, 87(A7):5140–5150, 1982. doi: 10.1029/JA087iA07p05140.

D. B. Melrose, R. G. Hewitt, and G. A. Dulk. Electron-cyclotron maser emission: Relative growth and damping rates for different modes and harmonics. Journal of Geophysical Research, 89(A2):897, 1984. doi: 10.1029/JA089iA02p00897.

E. E. Meshkov. Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics, 4(5):101–104, 1969. doi: 10.1007/BF01015969.

B. D. Metzger, B. Margalit, and L. Sironi. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Monthly Notices of the Royal Astronomical Society, 485(3):4091–4106, 2019. doi: 10.1093/mnras/stz700.

K. Mima and K. Nishikawa. Parametric instabilities and wave dissipation in plasmas. In A. A. Galeev and R. N. Sudan, editors, Basic Plasma Physics, volume 2, page 451, Amsterdam, 1984. North-Holland Publishing Company. P. L. Nolan, A. A. Abdo, M. Ackermann, et al. Fermi large area telescope second source catalog. The Astrophysical Journal Supplement Series, 199(2):31, 2012. doi: 10.1088/0067-0049/199/2/31.

A. Pe’er, F. Ryde, R. A. M. J. Wijers, P. Mészáros, and M. J. Rees. A new method of determining the initial size and lorentz factor of gamma-ray burst fireballs using a thermal emission component. The Astrophysical Journal, 664(1):L1–L4, 2007. doi: 10.1086/520534.

M. Pietka, R. P. Fender, and E. F. Keane. The variability time-scales and brightness temperatures of radio flares from stars to supermassive black holes. Monthly Notices of the Royal Astronomical Society, 446(4):3687–3696, 2015. doi: 10.1093/mnras/stu2335.

T. Piran. The physics of gamma-ray bursts. Reviews of Modern Physics, 76(4):1143–1210, 2005. doi: 10.1103/RevModPhys.76.1143.

I. Plotnikov and L. Sironi. The synchrotron maser emission from relativistic shocks in Fast Radio Bursts: 1D PIC simulations of cold pair plasmas. Monthly Notices of the Royal Astronomical Society, 485(3):3816–3833, may 2019. ISSN 0035-8711. doi: 10.1093/mnras/stz640.

A. C. S. Readhead. Equipartition brightness temperature and the inverse Compton catastrophe. The Astrophysical Journal, 426:51, 1994. doi: 10.1086/174038.

R. D. Richtmyer. Taylor instability in shock acceleration of compressible fluids. Communications in Pure Applied Mathematics, 13(2):297–319, 1960. doi: 10.1002/cpa.3160130207.

G. B. Rybicki and A. P. Lightman. Radiative Processes in Astrophysics. WILEY, 1979.

U. Schaefer-Rolffs and R. C. Tautz. The relativistic kinetic weibel instability: comparison of different distribution functions. Physics of Plasmas, 15(6):062105, 2008. doi: 10.1063/1.2932106.

L. Sironi and A. Spitkovsky. Particle acceleration in relativistic magnetized collisionless pair shocks: dependence of shock acceleration on magnetic obliquity. The Astrophysical Journal, 698(2):1523–1549, 2009. doi: 10.1088/0004-637X/698/2/1523.

L. Sironi and A. Spitkovsky. Particle acceleration in relativistic magnetized collisionless electron-ion shocks. The Astrophysical Journal, 726(2):75, 2011. doi: 10.1088/0004-637X/726/2/75.

L. Sironi, A. Spitkovsky, and J. Arons. The maximum energy of accelerated particles in relativistic collisionless shocks. The Astrophysical Journal, 771(1):54, 2013. doi: 10.1088/0004-637X/771/1/54.

A. Spitkovsky. Simulations of relativistic collisionless shocks: shock structure and particle acceleration. In T. Bulik, B. Rudak, and G. Madejski, editors, Astrophysical Source of High Energy Particles and Radiation, volume 801 of AIP Conference Proceedings, pages 345–350. Melville, NY: AIP, 2005. doi: 10.1063/1.2141897.

T. Tajima and J. Dawson. Laser electron accelerator. Physical Review Letters, 43:267–270, 1979. doi: 10.1103/PhysRevLett.43.267.

M. Takamoto and J. G. Kirk. Rapid cosmic-ray acceleration at perpendicular shocks in supernova remnants. The Astrophysical Journal, 809(1):29, 2015. doi: 10.1088/0004-637X/809/1/29.

R. Twiss. Radiation Transfer and the Possibility of Negative Absorption in Radio Astronomy. Australian Journal of Physics, 11(4):564, 1958. doi: 10.1071/PH580564.

J. W. Warwick. Radio Emission from Jupiter. Annual Review of Astronomy and Astrophysics, 2(1):1–22, 1964. doi: 10.1146/annurev.aa.02.090164.000245.

S. Weibel, Erich. Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Physical Review Letters, 2:83–84, 1959. doi: 10.1103/PhysRevLett.2.83.

D. Winske and K. B. Quest. Magnetic Field and Density fluctuations at Perpendicular Supercritical Collisionless Shocks. Journal of Geophysical Research, 93(A9):9681, 1988. ISSN 0148-0227. doi: 10.1029/JA093iA09p09681.

C. S. Wu and L. C. Lee. A theory of the terrestrial kilometric radiation. The Astrophysical Journal, 230:621–626, 1979. doi: 10.1086/157120.

X. Xu, P. Yu, S. F. Martins, F. S. Tsung, V. K. Decyk, J. Vieira, R. A. Fonseca, W. Lu, L. O. Silva, and W. B. Mori. Numerical instability due to relativistic plasma drift in EM-PIC simulations. Computer Physics Communications, 184(11):2503–2514, 2013. doi: 10.1016/j.cpc.2013.07.003.

T.-Y. B. Yang, Y. Gallant, J. Arons, and A. B. Langdon. Weibel instability in relativistically hot magnetized electron–positron plasmas. The Astrophysical Journal, 5:3369, 1993. doi: 10.1063/1.860631.

P. H. Yoon and R. C. Davidson. Exact analytical model of the classical weibel instability in a relativistic anisotropic plasma. Physical Review A, 35:2718–2721, 1987. doi: 10.1103/PhysRevA.35.2718.

G. T. Zatsepin and V. A. Kuz’min. Upper limit of the spectrum of cosmic rays. Journal of Experimental and Theoretical Physics Letters, 4:78, 1966. URL http://www. jetpletters.ac.ru/ps/1624/article_24846.shtml.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る