リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Global 1-km present and future hourly anthropogenic heat flux」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Global 1-km present and future hourly anthropogenic heat flux

VarquezAlvin Christopher Galang 清本翔太 DOKHANH NGOC 神田学 Alvin Christopher Varquez Shouta Kiyomoto Khanh Ngoc Do Manabu Kanda 東京工業大学 DOI:https://doi.org/10.1038/s41597-021-00850-w

2021.02.22

概要

Numerical weather prediction models are progressively used to downscale future climate in cities at increasing spatial resolutions. Boundary conditions representing rapidly growing urban areas are imperative to more plausible future predictions. In this work, 1-km global anthropogenic heat emission (AHE) datasets of the present and future are constructed. To improve present AHE maps, 30 arc-second VIIRS satellite imagery outputs such as nighttime lights and night-fires were incorporated along with the LandScanTM population dataset. A futuristic scenario of AHE was also developed while considering pathways of radiative forcing (i.e. representative concentration pathways), pathways of social conditions (i.e. shared socio-economic pathways), a 1-km future urbanization probability map, and a model to estimate changes in population distribution. The new dataset highlights two distinct features; (1) a more spatially-heterogeneous representation of AHE is captured compared with other recent datasets, and (2) consideration of future urban sprawls and climate change in futuristic AHE maps. Significant increases in projected AHE for multiple cities under a worst-case scenario strengthen the need for further assessment of futuristic AHE.

この論文で使われている画像

参考文献

1. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision. Report No. ST/ESA/SER.A/420 (United Nations, 2019).

2. Flanner, M. G. Integrating anthropogenic heat flux with global climate models. Geophysical Research Letters 36, L02801, https://doi. org/10.1029/2008gl036465 (2009).

3. Mccarthy, M. P., Best, M. J. & Betts, R. A. Climate change in cities due to global warming and urban effects. Geophysical Research Letters 37, 1–5, https://doi.org/10.1029/2010gl042845 (2010).

4. Subramanian, G. N. R. et al. pp. 63–68, https://doi.org/10.1007/978-3-319-52192-3_6 (Springer, Cham, 2017)

5. Doan, V. Q., Kusaka, H. & Nguyen, T. M. Roles of past, present, and future land use and anthropogenic heat release changes on urban heat island effects in Hanoi, Vietnam: Numerical experiments with a regional climate model. Sustainable Cities and Society 47, 101479 (2019).

6. Sailor, D. J., Georgescu, M., Milne, J. M. & Hart, M. A. Development of a national anthropogenic heating database with an extrapolation for international cities. Atmospheric Environment 118, 7–18 (2015).

7. Allen, L., Lindberg, F. & Grimmond, C. S. B. Global to city scale urban anthropogenic heat flux: model and variability. International Journal of Climatology 31, 1990–2005 (2010).

8. Yang, W. et al. A new global anthropogenic heat estimation based on high-resolution nighttime light data. Scientific Data 4 (2017).

9. Jin, K. et al. A new global gridded anthropogenic heat flux dataset with high spatial resolution and long-term time series. Scientific Data 6, (2019).

10. Dong, Y., Varquez, A. & Kanda, M. Global anthropogenic heat flux database with high spatial resolution. Atmospheric Environment

150, 276–294 (2017).

11. Dobson, J. E., Coleman, P. R., Durfee, R. C. & Worley, B. A. LandScan: a global population database for estimating populations at risk. Photogrammetric Engineering and Remote Sensing 66, 849–857 (2000).

12. Elvidge, C. D., Baugh, K. E., Zhizhin, M. & Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proceedings of the Asia-Pacific Advanced Network 35, 62 (2013).

13. Pachauri, R. K. Climate change 2014: Synthesis report. (IPCC, 2015).

14. Vuuren, D. P. V. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

15. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change 42, 153–168 (2017).

16. Vuuren, D. P. V. et al. A new scenario framework for Climate Change Research: scenario matrix architecture. Climatic Change 122, 373–386 (2013).

17. Hsu, F.-C., Baugh, K., Ghosh, T., Zhizhin, M. & Elvidge, C. DMSP-OLS Radiance Calibrated Nighttime Lights Time Series with Intercalibration. Remote Sensing 7, 1855–1876 (2015).

18. Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C. & Ghosh, T. VIIRS night-time lights. International Journal of Remote Sensing 38, 5860–5879 (2017).

19. Shi, K. et al. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sensing Letters 5, 358–366 (2014).

20. Shi, K. et al. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sensing 6, 1705–1724 (2014).

21. Zhou, Y., Varquez, A. C. G. & Kanda, M. High-resolution global urban growth projection based on multiple applications of the SLEUTH urban growth model. Scientific Data 6 (2019).

22. Clarke, K. C., Hoppen, S. & Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design 24, 247–261 (1997).

23. Varquez, A. C. G., Takakuwa, S., Kanda, M. & Xin, Z. Future population distribution of an urban agglomeration given climate change scenarios. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering) 74 (2018).

24. Morisita, M. The fitting of the logistic equation to the rate of increase of population density. Researches on Population Ecology 7, 52–55 (1965).

25. Elvidge, C., Zhizhin, M., Hsu, F.-C. & Baugh, K. VIIRS Nightfire: Satellite Pyrometry at Night. Remote Sensing 5, 4423–4449 (2013).

26. Elvidge, C., Zhizhin, M., Baugh, K., Hsu, F.-C. & Ghosh, T. Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data. Energies 9, 14 (2015).

27. Ichinose, T., Shimodozono, K. & Hanaki, K. Impact of anthropogenic heat on urban climate in Tokyo. Atmospheric Environment 33, 3897–3909 (1999).

28. Lee, S.-H., Song, C.-K., Baik, J.-J. & Park, S.-U. Estimation of anthropogenic heat emission in the Gyeong-In region of Korea. Theoretical and Applied Climatology 96, 291–303 (2008).

29. Varquez, A.C.G., Kiyomoto, S., Khanh, D. N. & Kanda, M. Global 1-km present and future hourly anthropogenic heat flux. figshare https://doi.org/10.6084/m9.figshare.12612458.v6 (2020)

30. Moriwaki, R., Kanda, M., Senoo, H., Hagishima, A. & Kinouchi, T. Anthropogenic water vapor emissions in Tokyo. Water Resources Research 44, W11424 (2008).

31. Iamarino, M., Beevers, S. & Grimmond, C. S. B. High-resolution (space, time) anthropogenic heat emissions: London 1970–2025. International Journal of Climatology 32, 1754–1767 (2011).

32. Climate, Environmental Retrieval, and Archive (CERA). The World Data Center for Climate (WDCC). https://cera-www.dkrz.de/WDCC/ui/cerasearch/ (2015).

33. The World Bank Energy intensity level of primary energy (MJ/$2011 PPP GDP). https://data.worldbank.org/indicator/EG.EGY. PRIM.PP.KD (2017).

34. Chen, G. et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nature Communications 11, 537 (2020).

35. Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. 2018. Global Power Plant Database. Published on Resource Watch and Google Earth Engine; http://resourcewatch.org/, https:// earthengine.google.com/ (2020).

36. Bright, E. A., Amy R. N., Urban M. L. LandScan 2013. Oak Ridge National Laboratory. https://landscan.ornl.gov/ (2014).

37. VIIRS Daily Mosaic. National Oceanic And Atmospheric Administration https://ngdc.noaa.gov/eog/viirs/download_ut_mos.html (2017).

38. VIIRS Nightfire Nighttime Detection and Characterization of Combustion Sources. Earth Observation Group https://eogdata.mines. edu/download_viirs_fire.html (2013).

39. World energy balance and statistics. International Energy Agency https://www.iea.org/classicstats/statisticssearch/ (2017).

40. SSP Public Database. International Institute for Applied Systems Analysis https://tntcat.iiasa.ac.at/SspDb (2017).

41. National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce (1996): NCEP/ NCAR Reanalysis Monthly Mean Subsets (from DS090.0), 1948-continuing. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://rda.ucar.edu/datasets/ds090.2/ (1996).

参考文献をもっと見る