リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Increased Risk of Extreme Precipitation Over an Urban Agglomeration With Future Global Warming」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Increased Risk of Extreme Precipitation Over an Urban Agglomeration With Future Global Warming

ドアン, グアン ヴァン Chen, Fei 日下, 博幸 Dipankar, Anurag Khan, Ansar Hamdi, Rafiq Roth, Matthias Niyogi, Dev 筑波大学

2022.09.15

概要

Understanding the response of extreme precipitation (EP) at a city scale to global warming is critical to reducing the respective risk of urban flooding. Yet, current knowledge on this issue is limited. Here, focusing on an urban agglomeration in the tropics, Singapore, we reveal that future global warming enhances both frequency and intensity of EP, based on simulations with a state-of-the-art convection-permitting regional climate model. EP intensification can reach maximum “super” Clausius-Clapeyron rate ( 𝐴𝐴 ≥+7% per K warming) rate, implying a “new normal” of “extreme events get more extreme,” which is consistently for both Representative Concentration Pathways 8.5 and 4.5. The intensification is lower for moderate and light precipitation. Also, global warming was found to dampen the urban effect on EP events. The EP enhancement is attributed to the increased atmospheric moisture and convective inhibition due to enhanced low-level stratification that delays a convection to develop until it becomes more intense.

この論文で使われている画像

参考文献

Ali, H., Fowler, H. J., Lenderink, G., Lewis, E., & Pritchard, D. (2021). Consistent large-scale response of hourly extreme precipitation to temper- ature variation over land. Geophysical Research Letters, 48(4), e2020GL090317. https://doi.org/10.1029/2020GL090317

Ali, H., & Mishra, V. (2018). Increase in subdaily precipitation extremes in India under 1.5 and 2.0°C warming worlds. Geophysical Research Letters, 45(14), 6972–6982. https://doi.org/10.1029/2018GL078689

Ali, H., Peleg, N., & Fowler, H. J. (2021). Global scaling of rainfall with dewpoint temperature reveals considerable ocean-land difference. Geophysical Research Letters, 48(15), e2021GL093798. https://doi.org/10.1029/2021GL093798

Allan, R. P., & Soden, B. J. (2008). Atmospheric warming and the amplification of precipitation extremes. Science, 321(5895), 1481–1484. https://doi.org/10.1126/science.1160787

Barbero, R., Fowler, H. J., Blenkinsop, S., Westra, S., Moron, V., Lewis, E., et al. (2019). A synthesis of hourly and daily precipitation extremes in different climatic regions. Weather and Climate Extremes, 26, 100219. https://doi.org/10.1016/j.wace.2019.100219

Berg, P., Moseley, C., & Haerter, J. O. (2013). Strong increase in convective precipitation in response to higher temperatures. Nature Geoscience, 6(3), 181–185. https://doi.org/10.1038/ngeo1731

Bornstein, R., Thunis, P., & Schayes, G. (1994). Observation and simulation of urban-topography barrier effects on boundary layer structure using the three-dimensional TVM/URBMET model. In S.-E. Gryning, & M. M. Millán (Eds.), Air pollution modeling and its application X (pp. 101–108). Springer US. https://doi.org/10.1007/978-1-4615-1817-4_12

Chen, F., Miao, S., Mukul, T., Bao, J. W., & Kusaka, H. (2011). A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. Journal of Geophysical Research, 116(D12), D12105. https://doi. org/10.1029/2010jd015533

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi. org/10.1002/qj.828

Demuzere, M., Kittner, J., & Bechtel, B. (2021). LCZ generator: A web application to create local climate zone maps. Frontiers in Environmental Science, 9, https://doi.org/10.3389/fenvs.2021.637455

Deser, C., Phillips, A., Bourdette, V., & Teng, H. (2012). Uncertainty in climate change projections: The role of internal variability. Climate Dynamics, 38(3), 527–546. https://doi.org/10.1007/s00382-010-0977-x

Diffenbaugh, N. S., Singh, D., Mankin, J. S., Horton, D. E., Swain, D. L., Touma, D., et al. (2017). Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences, 114(19), 4881–4886. https://doi.org/10.1073/ pnas.1618082114

Doan, Q.-V., Dipankar, A., Simón-Moral, A., Sanchez, C., Prasanna, V., Roth, M., & Huang, X.-Y. (2021). Urban-induced modifications to the diurnal cycle of rainfall over a tropical city. Quarterly Journal of the Royal Meteorological Society, 147(735), 1189–1201. https://doi. org/10.1002/qj.3966

Doan, Q.-V., & Kusaka, H. (2018). Projections of urban climate in the 2050s in a fast-growing city in Southeast Asia: The greater Ho Chi Minh City metropolitan area, Vietnam. International Journal of Climatology, 38(11), 4155–4171. https://doi.org/10.1002/joc.5559

Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20), 3077–3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 Emanuel, K. A. (1994). Atmospheric convection (1st ed.). Oxford University Press.

Fischer, E. M., & Knutti, R. (2016). Observed heavy precipitation increase confirms theory and early models. Nature Climate Change, 6(11), 986–991. https://doi.org/10.1038/nclimate3110

Fischer, E. M., Sippel, S., & Knutti, R. (2021). Increasing probability of record-shattering climate extremes. Nature Climate Change, 11(8), 689–695. https://doi.org/10.1038/s41558-021-01092-9

Fong, M., & Ng, L. K. (2012). The weather and climate of Singapore. Meteorological Service Singapore.

Fowler, H. J., Ali, H., Allan, R. P., Ban, N., Barbero, R., Berg, P., et al. (2021). Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 379(2195), 20190542. https://doi.org/10.1098/rsta.2019.0542

Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., et al. (2021). Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2(2), 107–122. https://doi.org/10.1038/s43017-020-00128-6

Guerreiro, S. B., Fowler, H. J., Barbero, R., Westra, S., Lenderink, G., Blenkinsop, S., et al. (2018). Detection of continental-scale intensification of hourly rainfall extremes. Nature Climate Change, 8(9), 803–807. https://doi.org/10.1038/s41558-018-0245-3

Gutmann, E. D., Rasmussen, R. M., Liu, C., Ikeda, K., Bruyere, C. L., Done, J. M., et al. (2018). Changes in hurricanes from a 13-yr convection-permitting pseudo–global warming simulation. Journal of Climate, 31(9), 3643–3657. https://doi.org/10.1175/JCLI-D-17-0391.1 Hamdi, R., Kusaka, H., Doan, Q.-V., Cai, P., He, H., Luo, G., et al. (2020). The state-of-the-art of urban climate change modeling and observations. Earth Systems and Environment, 4(4), 631–646. https://doi.org/10.1007/s41748-020-00193-3

Heever, S. C. v. d., & Cotton, W. R. (2007). Urban aerosol impacts on downwind convective storms. Journal of Applied Meteorology and Clima- tology, 46(6), 828–850. https://doi.org/10.1175/JAM2492.1

Hibino, K., Takayabu, I., Wakazuki, Y., & Ogata, T. (2018). Physical responses of convective heavy rainfall to future warming condition: Case study of the Hiroshima event. Frontiers of Earth Science, 6, 35. https://doi.org/10.3389/feart.2018.00035

Hong, S.-Y. (2006). Hongandlim-JKMS-2006. Journal of the Korean Meteorological Society, 42, 129–151.

Hong, S.-Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9), 2318–2341. https://doi.org/10.1175/MWR3199.1

IPCC AR6. (2022). AR6 synthesis report: Climate change 2022—IPCC. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-cycle/ Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3), 487–503. https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2

Kain, J. S. (2004). The Kain–Fritsch convective parameterization: An update. Journal of Applied Meteorology and Climatology, 43(1), 1702– 2181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0

Kishtawal, C. M., Niyogi, D., Tewari, M., Pielke Sr, R. A., & Shepherd, J. M. (2010). Urbanization signature in the observed heavy rainfall climatology over India. International Journal of Climatology, 30(13), 1908–1916.

Kusaka, H., & Kimura, F. (2004). Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. Journal of the Meteorological Society of Japan, 82(1), 67–80. https://doi.org/10.2151/jmsj.82.67

Kusaka, H., Kondo, H., Kikegawa, Y., & Kimura, F. (2001). A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Boundary-Layer Meteorology, 101(3), 329–358. https://doi.org/10.1023/A:1019207923078

Kusaka, H., Nawata, K., Suzuki-Parker, A., Takane, Y., & Furuhashi, N. (2014). Mechanism of precipitation increase with urbanization in Tokyo as revealed by ensemble climate simulations. Journal of Applied Meteorology and Climatology, 53(4), 824–839.

Lauer, A., Zhang, C., Elison-Timm, O., Wang, Y., & Hamilton, K. (2013). Downscaling of climate change in the Hawaii region using CMIP5 results: On the choice of the forcing fields. Journal of Climate, 26(24), 10006–10030. https://doi.org/10.1175/JCLI-D-13-00126.1

Lenderink, G., & Meijgaard, E. v. (2010). Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environmental Research Letters, 5(2), 025208. https://doi.org/10.1088/1748-9326/5/2/025208

Lenderink, G., & van Meijgaard, E. (2009). Unexpected rise in extreme precipitation caused by a shift in rain type? Nature Geoscience, 2(6), 373. https://doi.org/10.1038/ngeo524

Li, Y., Fowler, H. J., Argüeso, D., Blenkinsop, S., Evans, J. P., Lenderink, G., et al. (2020). Strong intensification of hourly rainfall extremes by urbanization. Geophysical Research Letters, 47(14), e2020GL088758. https://doi.org/10.1029/2020GL088758

Liu, J., & Niyogi, D. (2019). Meta-analysis of urbanization impact on rainfall modification. Scientific Reports, 9(1), 7301. https://doi.org/10.1038/ s41598-019-42494-2

Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu, G., et al. (2009). Decadal prediction: Can it be skillful? Bulletin of the American Meteorological Society, 90(10), 1467–1486. https://doi.org/10.1175/2009BAMS2778.1

Meyer, L., Brinkman, S., van Kesteren, L., Leprince-Ringuet, N., & van Boxmeer, F. (2020). Technical support unit for the synthesis report (Vol. 169).

Mishra, A., Mukherjee, S., Merz, B., Singh, V. P., Wright, D. B., Villarini, G., et al. (2022). An Overview of Flood Concepts, Challenges, and Future Directions. Journal of Hydrologic Engineering, 27(6), 03122001.

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102(D14), 16663–16682. https://doi.org/10.1029/97JD00237 Moustakis, Y., Onof, C. J., & Paschalis, A. (2020). Atmospheric convection, dynamics and topography shape the scaling pattern of hourly rainfall extremes with temperature globally. Communications Earth & Environment, 1(1), 1–9. https://doi.org/10.1038/s43247-020-0003-0

Mukul Tewari, N., Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M., et al. (2004). Implementation and verification of the unified NOAH land surface model in the WRF model. Presented at the 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction(Formerly Paper Number 17.5) (pp. 11–15).

NCEP. (2021). NOAA climate data record (CDR) of CPC morphing technique (CMORPH) high resolution global precipitation estimates. Retrieved from https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00948

Niyogi, D., Pyle, P., Lei, M., Arya, S. P., Kishtawal, C. M., Shepherd, M., et al. (2011). Urban modification of thunderstorms: An observa- tional storm climatology and model case study for the Indianapolis urban region. Journal of Applied Meteorology and Climatology, 50(5), 1129–1144.

Pall, P., Patricola, C. M., Wehner, M. F., Stone, D. A., Paciorek, C. J., & Collins, W. D. (2017). Diagnosing conditional anthropogenic contri- butions to heavy Colorado rainfall in September 2013. Weather and Climate Extremes, 17, 1–6. https://doi.org/10.1016/j.wace.2017.03.004 Panthou, G., Mailhot, A., Laurence, E., & Talbot, G. (2014). Relationship between surface temperature and extreme rainfalls: A multi-time-scale and event-based analysis. Journal of Hydrometeorology, 15(5), 1999–2011. https://doi.org/10.1175/JHM-D-14-0020.1

Park, I.-H., & Min, S.-K. (2017). Role of convective precipitation in the relationship between subdaily extreme precipitation and temperature. Journal of Climate, 30(23), 9527–9537. https://doi.org/10.1175/JCLI-D-17-0075.1

Rajczak, J., & Schär, C. (2017). Projections of future precipitation extremes over Europe: A multimodel assessment of climate simulations. Jour- nal of Geophysical Research: Atmospheres, 122(2010), 773–810. https://doi.org/10.1002/2017JD027176

Rasmussen, R., Liu, C., Ikeda, K., Gochis, D., Yates, D., Chen, F., et al. (2011). High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. Journal of Climate, 24(12), 3015–3048. https://doi. org/10.1175/2010JCLI3985.1

Sato, T., Kimura, F., & Kitoh, A. (2007). Projection of global warming onto regional precipitation over Mongolia using a regional climate model. Journal of Hydrology, 333(1), 144–154. https://doi.org/10.1016/j.jhydrol.2006.07.023

Schär, C., Frei, C., Lüthi, D., & Davies, H. C. (1996). Surrogate climate-change scenarios for regional climate models. Geophysical Research Letters, 23(6), 669–672. https://doi.org/10.1029/96GL00265

Scherrer, S. C., Fischer, E. M., Posselt, R., Liniger, M. A., Croci-Maspoli, M., & Knutti, R. (2016). Emerging trends in heavy precipi- tation and hot temperature extremes in Switzerland. Journal of Geophysical Research: Atmospheres, 121(6), 2626–2637. https://doi. org/10.1002/2015JD024634

Shem, W., & Shepherd, M. (2009). On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmospheric Research, 92(2), 172–189. https://doi.org/10.1016/j.atmosres.2008.09.013

Shepherd, T. G. (2014). Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geoscience, 7(10), 703–708. https://doi.org/10.1038/ngeo2253

Simón-Moral, A., Dipankar, A., Doan, Q.-V., Sanchez, C., Roth, M., Becker, E., & Huang, X.-Y. (2021). Urban intensification of convective rainfall over the Singapore—Johor Bahru region. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.4147

Singh, J., Karmakar, S., PaiMazumder, D., Ghosh, S., & Niyogi, D. (2020). Urbanization alters rainfall extremes over the contiguous United States. Environmental Research Letters, 15(7), 074033.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., et al. (2008). A description of the advanced research WRF version 3. NCAR technical notes, NCAR/TN-4751STR.

Spada, G., Bamber, J. L., & Hurkmans, R. T. W. L. (2013). The gravitationally consistent sea-level fingerprint of future terrestrial ice loss. Geophysical Research Letters, 40(3), 482–486. https://doi.org/10.1029/2012GL053000

Stull, R. (2016). Practical meteorology: An algebra-based Survey of atmospheric science(black and white ed.). Sundog Publishing, LLC. Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

United Nations (2015). Sustainable development goals. Retrieved from https://www.undp.org/sustainable-development-goals

van Vuuren, D. P., Edmonds, J. A., Kainuma, M., Riahi, K., & Weyant, J. (2011). A special issue on the RCPs. Climatic Change, 109(1–2), 1–4. https://doi.org/10.1007/s10584-011-0157-y

Wang, J., Chen, F., Doan, Q-V., & Xu, Y. (2021). Exploring the effect of urbanization on hourly extreme rainfall over Yangtze River Delta of China. Urban Climate, 36, 100781. https://doi.org/10.1016/j.uclim.2021.100781

Wasko, C., Parinussa, R. M., & Sharma, A. (2016). A quasi-global assessment of changes in remotely sensed rainfall extremes with temperature. Geophysical Research Letters, 43(2412), 659668–659712. https://doi.org/10.1002/2016GL071354

Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., et al. (2014). Future changes to the intensity and frequency of short-duration extreme rainfall. Reviews of Geophysics, 52(3), 522–555. https://doi.org/10.1002/2014RG000464

Yang, L., Ni, G., Tian, F., & Niyogi, D. (2021). Urbanization Exacerbated Rainfall over European Suburbs under a Warming Climate. Geophys- ical Research Letters, 48(21), e2021GL095987.

Ye, X., & Niyogi, D. (2022). Resilience of human settlements to climate change needs the convergence of urban planning and urban climate science. Computational Urban Science, 2(1), 1–4.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る