リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of LED Light Combinations on Photosynthetic Efficiency and Growth of Lettuce」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of LED Light Combinations on Photosynthetic Efficiency and Growth of Lettuce

TSAI, Chun–Yu YEN, Yung–Fu AY, Chyung MIYAJIMA, Ikuo 宮島, 郁夫 ミヤジマ, イクオ HUANG, Kuang–Liang 九州大学

2022.09

概要

This study aimed to investigate the influence of red, blue, green, and yellow light–emitting diode (LED) lights with varying intensities and ratios on the photosynthetic efficiency of Boston lettuce and Ziyan let- tuce; treatments were conducted using four LED lights, namely red (R), blue (B), green (G), and yellow (Y) LED lights; a light intensity of 120 µmole.m−2.s−1 and CO concentration of 1000 ppm were applied. With respect to triple light combinations, the highest photosynthetic efficiency was observed in Boston lettuce under RBG treatment (R, 32%; B, 48%; G, 20%) and in Ziyan lettuce under RBY treatment (R, 36%; B, 54%; Y, 10%), indicating that different light combinations are required for the two types of lettuce. The plant growth, leaf pattern, nitrate level, and electric power consumption of Boston lettuce (under G, RB, and RBG treatments), Ziyan lettuce (under R, RB, and RBY treatments), and a control group (under white LED light [W]) were compared. The results indicated that Boston lettuce under RBG treatment produced a denser leaf pattern and deeper colors; its growth was inferior, but its nitrate level and electric power consumption were lower relative to those under G and W treatments. Ziyan lettuce under RBY treatment produced deeper leaf colors, but its growth did not differ significantly from that of Ziyan lettuce under R treatment; its nitrate level and electric power consumption were lower. The two aforementioned types of lettuce were suitable for consumption. The findings indicated that optimal photosynthetic efficiency improved the nitrate metabolism in plants and reduced power consumption. The growth pattern achieved with a lighting mode that promotes optimal photosynthetic efficiency has greater commercial value and can be applied in plant factories for mass–producing lettuce that meets consumption standards, thereby providing better food safety for consumers.

この論文で使われている画像

参考文献

Banaś, A. K., C. Aggarwal, J. Łabuz, O. Sztatelman and H. Gabryś 2012 Blue light signaling in chloroplast movements J. Expt. Bot., 63: 1559–1574

Barrett, D. M., J. C. Beaulieu and R. Shewfelt 2010 Color, flavor, texture, and nutritional quality of fresh–cut fruits and vegeta- bles: desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. Nutr., 50: 369–389

Bottex, B., J. L. C. M. Dorne, D. Carlander, D. Benford, H. Przyrembel, C. Heppner, J. Kleiner and A. Cockburn 2008 Risk–benefit health assessment of food – food fortification and nitrate in vegetables. Trends Food Sci. Tech., 19: 113–119

Briggs, W. R., C. F. Beck, A. R. Cashmore, J. M. Christie and J. Hunghes 2001 The phototropin family of photoreceptors. Plant Cell, 13: 993–998

Chao, C. S. 2015 Study of Mixed Solar and City Powered LEDs on the Leafy Lettuce Production in Growth Chamber. Master degree, Department of Bio–Industrial Mechatronics Engineering, National Chung Hsing University

Chen, X. L., Y. L. Li., L. C. Wang and W. Z. Guo 2021 Red and blue wavelengths affect the morphology, energy use efficiency and nutritional content of lettuce (Lactuca sativa L.). Sci. Rep., 11: 8374

Chien–Chang, H. J. and W. F. Fung 1995 Effects of organic ferti- lizers on nitrate levels of leafy vegetables. Bull. Taoyuan Distr. Agric. Res. Extens. Stat., 21: 7–19

Chung, H. Y. 2019 Regulating Light and Nutrient Recipes to Produce Value–Added Sprout and Lettuce in Plant Factory. Doctoral dissertation, Department of Biomechatronics Engineering, National Taiwan University

Connor, A. M., C. E. Finn and P. A. Alspach 2005 Genotypic and environmental variation in antioxidant activity and total phe- nolic content among blackberry and hybridberry cultivars. J. Amer. Soc. Hort. Sci., 130: 527–533

Dong, C., Y. Fu, G. Liu and H. Liu 2014 Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS. Adv. Space Res., 53: 1557–1566

Fan, X., J. Zang, Z. Xu, S. Guo, X. Jiao, X. Liu and Y. Gao 2013 Effects of different light quality on growth, chlorophyll concen- tration and chlorophyll biosynthesis precursors of non–heading Chinese cabbage (Brassica campestris L.). Acta Physiol. Plant., 35: 2721–2726

Folta, K. and K. S. Childers 2008 Light as a growth regulator: controlling plant biology with narrow–bandwidth solid–state lighting systems. HortScience, 43: 1957–1964

Folta, K. M. and S. A. Maruhnich 2007 Green light: a signal to slow down or stop. J. Exp. Bot., 58: 3099–3111

Glick, R. E., S. W. Mccauley, W. Gruissem and A. Melis 1986 Light quality regulates expression of chloroplast genes and assembly of photosynthetic membrane complexes. Proc. Natl. Acad. Sci., 83: 4287–4291

Glowacka, B. 2002 Effect of light colour on the growth of tomato (Lycopersicon esculentum Mill.) transplant. Acta Sci. Polonorum. Hortorum Cutlus, 1: 93–103

Hill, M. J. 1999 Nitrate toxicity: myth or reality? Br. J. Nutr., 81: 343–344

Hogewoning, S. W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen and J. Harbinson 2010 Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot., 61: 3107–3117

Huang, J. K. and Y. Sung 2013 Effect of shading on the growth and nitrate levels in lettuce (Lactuca sativa L.). Hort. NCHU, 38: 33–47

Johkan, M., K. Shoji, F. Goto, S. N. Hashida and T. Yoshihara 2010 Blue light–emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf let- tuce. Hort. Sci., 45: 1809–1814

Kamiya, A., I. Ikegami and E. Hase 1981 Effects of light on chlo- rophyll formation in cultured tobacco cells I. chlorophyll accu- mulation and photo transformation of protochlorophyll (ide) in callus cells under blue and red light. Plant Cell Physiol. 8: 1385–1396

Kim, H. H., G. Goins, R. Wheeler and J. Sager 2004a Stomatal conductance of lettuce grown under or exposed to different light quality. Ann. Bot., 94: 91–97

Kim, H. H., G. Goins, R. Wheeler and J. Sager 2004b Green light supplementation for enhanced lettuce growth under red and blue light–emitting diodes. Hort. Sci., 39: 1617–1622

Kim, H. H., R. Wheeler, J. C. Sager, N. C. Yorio and G. Goins 2005 Light emitting diode as an illumination source for plants: a review of research at Kennedy space center. Habitation, 10: 71–78

Kitazaki, K., A. Fukushima, R. Nakabayashi, Y. Okazaki, M. Kobayashi, T. Mori, T. Nishizawa, M. Sebastian., W. Richard, K. Saito, K. Shoji and K. Miyako 2018 Metabolic reprogramming in leaf lettuce grown under different light quality and intensity conditions using narrow–band LEDs. Sci. Rep., 8: 7914

Klein, R. M. 1992 Effects of green light on biological systems. Biol. Rev., 67: 199–284

Kurilcik, A., M. R. Canova, S. Dapkuniene, S. Zilinskaite and G. Kurilcik 2008 In vitro culture of Chrysanthemum plantlets using light–emitting diodes. Cent. Eur. J. Biol., 2: 161–167

Lee, J. S., T. G. Lim and H. K. Yong 2014 Growth and phytochem- icals in lettuce as affected by different ratios of blue to red LED radiation. Acta. Hortic., 1037: 843–848

Lichtenthaler, H. K., C. Buschmann and U. Rahmsdorf 1980 The importance of blue light for the development of sun–type chlo- roplasts. In “The Blue Light Syndrome”, ed. by H. Senger, Springer–Verlag, Berlin, Germany, pp. 485–494

Lin, K. H., M. Y. Huang, W. D. Huang, M. H. Hsu, Z. W. Yang and C. M. Yang 2013 The effects of red blue and white light–emitting diodes on the growth development and edible quality of hydro- ponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hort., 150: 86–91

Li, W. L., J. Yu, G. B. Zhang and Q. C. Yang 2010 Effects of light quality on parameters of gas exchange and chlorophyll fluores- cence in lettuce leaves by using LED. J. Gansu Agric. Univ., 45: 47–51

Liu, X. Y., S. R. Guo, Z. G. Xu, X. L. Jiao and T. Tezuka 2011 Regulation of chloroplast ultrastructure, cross–section anatomy of leaves and morphology of stomata of cherry tomato by differ- ent light irradiations of LEDs. Hort. Sci., 46: 217–221

Martínez–García J. F., M. Gallemí, M. J. Molina–Contreras, B. Llorente, M. R. R. Bevilaqua and P. H. Quail 2014 The shade avoidance syndrome in Arabidopsis: the antagonistic role of phytochrome A and B differentiates vegetation proximity and canopy shade. PLoS One, 9: e109275

McNellis, T. W. and X. W. Deng 1995 Light control of seedling morphogenetic pattern. Plant Cell, 7: 1749–761

Mitchell, C. A., A. J. Both, C. Michael Bourget, J. F. Burr, C. Kubota, R. G. Lopez, R. C. Morrow and E. S. Runkle 2012 LEDs: the future of greenhouse lighting! Chron. Hortic., 52: 6–11

Muneer S., E. J. Kim, J. S. Park and J. H. Lee. 2014. Influence of green, red and blue light emitting diodes on multiprotein com- plex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int. J. Mol. Sci. 15: 4657–4670

Naznin, M. T., M. Lefsrud, V. Gravel and M. O. K. Azad 2019 Blue light added with red LEDs enhance growth characteristics, pig- ments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants (Basel), 8: 93

Nigel, B. 2000 Nitrates in the human diet–good or bad? Ann. Zootech., 49: 207–216

Ouzounis, T., E. Rosenqvist and C. O. Ottosen 2015 Spectral effects of artificial light on plant physiology and secondary metabolism: a review. Hort. Sci., 50: 1128–1135

Saito, Y., H. Shimizu, H. Nakashima, J. Miyasaka and K. Ohdoi 2010 The effect of light quality on growth of lettuce. IFAC Proc., 43: 294–298

Sergejeva, D., I. Alsina, M. Duma, L. Dubova, I. Augspole, I. Erdberga and K. Berzina 2018 Evaluation of different lighting sources on the growth and chemical composition of lettuce. Agron. Res., 16: 892–899

Snowden, M. C., K. R. Cope and B. Bugbee 2016 Sensitivity of seven diverse species to blue and green light: interactions with photon flux. PLoS One, 11: e0163121

Son, K. H. and M. M. Oh 2013 Leaf shape, growth, and antioxi- dant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light–emitting diodes. Hort. Sci., 48: 988–995

Steinger, T., B. Roy and M. Stanton 2003 Evolution in stressful environments II: adaptive value and costs of plasticity in response to low light in Sinapis arvensis. J. Evol. Biol., 16: 313–323

Stutte, G. W. and S. T. Edney 2009 Skerritt Photoregulation of bioprotectant content of red leaf lettuce with light–emitting diodes. Hort. Sci., 44: 79–82

Tao, H., V. Vaganov, S. Cao, Q. Li, L. Ling, X. Cheng, L. Peng, C. Zhang, A. N. Yakovlev, Y. Zhong and M. Tu 2017 Improving “color rendering” of LED lighting for the growth of lettuce. Sci. Rep., 7: 45944

Tennessen, D. J., E. L. Singsaas and T. D. Sharkey 1994 Light– emitting diodes as a light–source for photosynthesis research. Photosynth. Res., 39: 85–92

Tsai, C. Y., Y. F. Yen, C. Ay, I. Miyajima and K. L. Huang 2021 Growth and photosynthetic efficiency of two lettuce cultivars under light–emitting diode monochromatic light. J. Fac. Agric. Kyushu Univ., 66: 11–20

Wang, S. T., S. L. Lin, W. N. Chang and C. H. Hsiao 1998 Cultivar’s differences in nitrate level of lettuce (Lactuca sativa L.). J. Agric. Res. China, 47: 63–70

Wollaeger, H. M. and E. S. Runkle 2014 Growth of impatiens, Samuoliene, G., A. UrbonavičiūTe, P. Duchovskis, Z. Bliznikas, P. petunia, salvia, and tomato seedlings under blue, green, and red Vitta, A. ŽUkauskas 2009 Decrease in nitrate concentration in leafy vegetables under a solid–state illuminator. Hort. Sci., 44: 1857–1860 light–emitting diodes. Hort. Sci., 49: 734–740

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る