リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nutrient–Specific Variation of C–N Metabolism in the Leaves and Roots of Bell Pepper (Capsicum annunm. L) in Response to Macronutrient Deficiency」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nutrient–Specific Variation of C–N Metabolism in the Leaves and Roots of Bell Pepper (Capsicum annunm. L) in Response to Macronutrient Deficiency

LEE, Yejin HWANG, Tae-Young LEE, Seulbi SHINOGI, Yoshiyuki 凌, 祥之 シノギ, ヨシユキ OH, TaeK-Keun SUNG, Jwakyung 九州大学

2020.02

概要

Mineral nutrients as an essential element for agricultural crops are absorbed by the roots, transported in the xylem to the shoots, and assimilated into organic molecules or involved in a large number of metabo- lism. Visual symptoms such as growth retardation, reduced crop production and resistance against disease and pests are strongly connected with a result of metabolic disturbance by mineral deficiency. Of essential mineral nutrients, we looked into mineral–mineral interactions (expressed by synergism and antagonism) and subsequent metabolic changes in the leaves and roots of bell pepper during macronutrient deficiency. The deficiency of cationic nutrients (K, Ca and Mg) and S responded generally antagonistically each other in terms of uptake, and these blockages resulted in significant changes in metabolite levels which are able to be caused by restricted shoots–roots communication of phytosynthates. Each nutrient affected differently to the type and amount of metabolites and plant organs. Interesting finding was significant increase in amino acids in both organs by cations deficiency, and, of them, glutamine and asparagine were more than 10–fold accumulated, which could be considered as a potential indicator of cation deficiency. Furthermore, it was carefully assumed that a limited uptake of sulfur accompanied by cations deficiency could be direct cause of disturbance in primary metabolism rather than cations itself. In view of this, on the premise of fur- ther study to verify what happens between cations and sulfur in plants, our study might help to make clear the complicated mechanisms of metabolic networks in responses to individual and multiple nutrient stresses.

この論文で使われている画像

参考文献

Amtmann A. and P. Armengaud 2009 Effects of N, P, K and S on metabolism: new knowledge gained from multi–level analysis, Curr. Opin. Plant Biol., 12: 275–283

Amtmann A., J. P. Hammond, P. Armengaud and P. J. White 2006 Nutrient sensing and signaling in plants: potassium and phos- phorus. In Advances in Botanical Research Incorporating Advances in Plant Pathology, vol. 43, Edited by Callow, J. A., Academic Press, 209–257

Armengaud P., R. Sulpice, A. J. Miller, M. Stitt, A. Amtmann and Y. Gibon 2009 Multi–level analysis of primary metabolism pro- vides new insights into the role of potassium nutrition for glycol- ysis and nitrogen assimilation in Arabidopsis thaliana roots. Plant Physiol., 150: 772–785

Amtmann A., S. Troufflard and P. Armengaud 2008 The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plant, 133: 682–691

Bergman W 1992 Nutritional disorders of plants. Development, visual, and analytical diagnosis. Gustav Fischer Verlag, Jena, Germany

Cakmak I., C. Hengeler and H. Marschner 1994a Partitioning of shoot and root dry matter and carbohydrates in bean plants suf- fering from phosphorus, potassium and magnesium deficiency. J. Exp. Bot., 45: 1245–1250

Cakmak I., C. Hengeler and H. Marschner 1994b Changes in phlo- em export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J. Exp. Bot., 45: 1251–1257

Chu C. C., J. S. Coleman and H. A. Mooney 1992 Control of bio- mass partitioning between roots and shoots: atmospheric CO2 enrichment and the acquisition and allocation of carbon and nitrogen in wild radish. Oecologia, 89: 580–587

Ciereszko I. and A. Barbachowska 2000 Sucrose metabolism in leaves and roots of bean (Phaseolus vulgaris L.) during phos- phate deficiency. J. Plant Physiol., 156: 640–644

Dietz K. J. and J. Heilos 1990 Carbon metabolism in spinach leaves as affected by leaf age and phosphorus and sulfur nutri- tion. Plant Physiol., 93: 1219–1225

Epstein I. and E. J. Bloom 2005 Mineral nutrition of plants: Prin- ciples and perspectives. Edn 2. Sunderland, MA, USA, Sinauer Ass

Fritz C., N. Palacios–Rojas, R. Feil and M. Stitt 2006 Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism, Plant J., 46: 533–548

Guo R., L. Shi, C. Yang, C. Yan, X. Zhong, Q. Liu, X. Xia and H. Li 2016 Comparison of ionomic and metabolites response under alkali stress in old and young leaves of cotton (Gossypium hir- sutum L.) seedlings. Front. Plant Sci., 7: 1785

Gupta S., B. S. Yadav, U. Raj, S. Freilich and P. K. Varadwaj 2017 Transcriptomic analysis of soil grown T. aestivum cv. Root to reveal the changes in expression of genes in response to multi- ple nutrients deficiency. Front. Plant Sci., 8: 1025

Hermans C., C. N. Johnson, R. J. Strasser and V. Verbruggen 2004 Physiological characterization of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photo- systems I and II. Planta, 220: 344–355

Hirai M. Y., M. Klein, Y. Fujikawa, M. Yano, D. B. Goodenowe, Y. Yamazaki, S. Kanaya, Y. Nakamura, M. Kitayama, H. Suzuki, N. Sakurai, D. Shibata, J. Tokuhisa, M. Reichelt, J. Gershenzon, J. Papenbrock and K. Saito 2005 Elucidation of gene–to–gene and metabolite–to–gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J. Biol. Chem., 280: 25590–25595

Hirai M. Y. and K. Saito 2008 Analysis of systemic sulfur metabo- lism in plants using integrated ‘–omics’ strategies. Mol. Bio- syst., 4: 967–973

Hoefgen R. and V. J. Nikiforova 2008 Metabolomics integrated with transcriptomics: assessing systems response to sulfur–defi- ciency stress. Physiol. Plant., 132: 190–198

Huang C. Y., U. Roessner, I. Eickmeier, Y. Genc, D. L. Callahan, N. Shirley, P. Langridge and A. Bacic 2008 Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate–deficient barley plants (Hordeum vulgare L.). Plant Cell Physiol., 49: 691–703

Jin X., G. Ma, L. Yang and L. Chen 2016 Alterations of physiology and gene expression due to long–term magnesium–deficiency differ between leaves and roots of Citrus reticulate. J. Plant Physiol., 198: 103–115

Jones Jr J. B., B. Wolf and H. A. Mills 1991 Plant analysis hand- book. Micro Macro Publishing, Inc., Athens, GA Kim M. S., S. A. Baek, S. U. Park, K. H. Im and J. K. Kim 2017 Targeted metabolite profiling to evaluate unintended metabolic changes of genetic modification in resveratrol–enriched rice (Oryza sativa L.). Applied Biol. Chem., 60: 205–214

Kim Y. B., S. Y. Park, C. H. Park, W. T. Park, S. J. Kim, S. H. Ha, M. V. Arasu, N. A. Al–Dhabi, J. K. Kim and S. U. Park 2016 Metabolomics of differently colored Gladiolus cultivars. Applied Biol. Chem., 59: 597–607

Laegreid M., O. C. Bockman and O. Kaarstad 1999 Fertilizers and the environment. CABI. Wallingford, UK

Lavon R. 1995 Effect of potassium, magnesium, and calcium defi- ciencies on carbohydrate pools and metabolism in Citrus leaves. J. Amer. Soc. Hort. Sci., 120: 54–58

Lavon R., R. Salomin and E. E. Goldschmidt 1999 Effect of potas- sium, magnesium, and calcium deficiencies on nitrogen constit- uents and chloroplast components in Citrus leaves. J. Amer. Soc. Hort. Sci., 124: 158–162.

Marschner H., E. A. Kirkby and I. Cakmak 1996 Effect of mineral nutritional status on shoot–root partitioning of photo assimilates and cycling of mineral nutrients. J. Exp. Bot., 47: 1255–1263

Mengel E. A. and E. A. Kirkby 1987 Principles of plant nutrition. International Potash Institute, Bern, Switzerland

Morcuende R., R. Bari, Y. Gibon, W. Zheng, B. D. Pant, O. Blasing, B. Usadel, T. Czechowski, M. K. Udvardi, M. Stitt and W. R. Scheible 2007 Genome–wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phospho- rus. Plant, Cell and Environ., 30: 85–112

Nikiforova V. J., B. Gakiere, S. Kempa, M. Adamik, L. Willmitzer, H. Hesse and R. Hoefgen 2004 Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. J. Exp. Bot., 55: 1861–1870

Nikiforova V. J., J. Kopka, V. Tolstikov, O. Fiehn, L. Hopkins, M. J. Hawkesford, H. Hesse and R. Hoefgen 2005 Systems rebalanc- ing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol., 138: 304–308

Okazaki K., N. Oka, T. Shinano, M. Osaki and M. Takebe 2008 Differences in the metabolite profiles of spinach (Spinacia oleracea L.) leaf in different concentrations of nitrate in the culture solution. Plant Cell Physiol., 49: 170–177:

Pii Y., S. Cesco and T. Mimmo 2015 Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status. Plant Physiol. Biochem., 94: 48–56

Plaxton W. C. 2004 Plant response to stress: biochemical adapta- tions to phosphate deficiency. In Encyclopedia of Plant and Crop Science, Ed. by Goodman R Marcel Dekker, Inc., New York, pp. 976–980

Rufty T. W., S. C. Huber and R. J. Volk 1988 Alterations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol., 88: 725–730

Scheible W. R., M. Lauerer, E. D. Schulze, M. Caboche and M. Stitt 1997 Accumulation of nitrate in the shoot acts as a signal to regulate shoot–root allocation in tobacco. Plant J., 11: 671–691

Sung J., S. Lee, Y. Lee, S. Ha, B. Song, T. Kim, B. M. Waters and H. B. Krishnan 2015 Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium–deficient condition. Plant Sci., 241: 55–64

Sung J., H. Yun, S. Baek, A. R. Fernie, Y. X. Kim, Y. Lee, S. Lee, D. Lee and J. Kim 2018 Changes in mineral nutrient concentra- tions and C–N metabolism in cabbage shoots and roots following macronutrient deficiency. J. Plant Nutr. Soil Sci., 181: 777– 786

Takahashi H., T. Imamura, A. Miyagi and H. Uchimiya 2012 Com- parative metabolomics of developmental alterations caused by mineral deficiency during in vitro culture of Gentiana triflora. Metabolomics, 8: 154–163

Thomas S. G., P. E. Bilsborrow, T. J. Hocking and J. Bennett 2000 Effect of sulfur deficiency on the growth and metabolism of sugar beet (Beta vulgaris cv. Druid). J. Sci. Food Agri., 80: 2051–5062

Urbanczyk–Wochniak E. and A. R. Fernie 2005 Metabolic profil- ing reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically–grown tomato (Solanum lycopersicum) plants. J Exp. Bot., 56: 309–321

Watanabe T., M. R. Broadley, S. Jansen, P. J. White, J. Takada, K. Satake, T. Takamatsu, S. J. Tuah and M. Osaki 2007 Evolu- tionary control of leaf element composition in plants. New Phy- tol., 174: 516–523

Yuan H. and D. Liu 2008 Signaling components involved in plant responses to phosphate starvation. J. Integr. Plant Biol., 50 849–859

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る