リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Individual identification of inbred medaka based on characteristic melanophore spot patterns on the head」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Individual identification of inbred medaka based on characteristic melanophore spot patterns on the head

Morizumi, Hajime Sugimoto, Naozo Ueno, Tomohiro 京都大学 DOI:10.1038/s41598-023-27386-w

2023

概要

With disease progression, individual differences appear, even in an animal disease model with genetic homogeneity. Therefore, non-invasive long term observation and individual identification is desirable for late-onset diseases. To this end, the natural markings used in ecological studies are preferable to the external invasive markings used in animal husbandry and fisheries management. Here, we propose using the distribution pattern of melanophore spots on the head of an inbred strain of medaka, a small fish model organism with monotonous pigmentation, as biometric identifier. Long term and variation analyses show different patterns whose characteristics can be attributed to individual animals. These findings were also valid in a non-inbred medaka strain and will help individual follow-up of late-onset disease medaka models for the elucidation of the pathogenesis and drug discovery.

この論文で使われている画像

参考文献

1. Kasahara, M. et al. Te medaka draf genome and insights into vertebrate genome evolution. Nature 447, 714–719 (2007).

2. Committee on Standardized Genetic Nomenclature for Mice. Rules and guidelines for gene nomenclature. In Genetic Variants and Strains of the Laboratory Mouse (eds. Lyon, M.F. & Searle, A.G.), 1–11 (Oxford University Press, New York, 1989).

3. Taguchi, Y. Inbred strains and its characteristics. In Biology of Medaka (eds. Egami, N., et al.), 129–142 (University of Tokyo Press, Tokyo, 1990).

4. Green, E. L. Genetics and Probability in Animal Breeding Experiments (Palgrave, 1981).

5. Hyodo-Taguchi, Y. Inbred strains of the medaka, Oryzias latipes. Fish Biol. J. Medaka 8, 11–14 (1996).

6. Loosli, F. et al. A genetic screen for mutations afecting embryonic development in medaka fsh (Oryzias latipes). Mech. Dev. 97, 133–139 (2000).

7. Ishikawa, Y. Medakafsh as a model system for vertebrate developmental genetics. BioEssays 22, 487–495 (2000).

8. Wittbrodt, J., Shima, A. & Schartl, M. Medaka–a model organism from the far East. Nat. Rev. Genet. 3, 53–64 (2002).

9. Shima, A. & Mitani, H. Medaka as a research organism: Past, present and future. Mech. Dev. 121, 599–604 (2004).

10. Furutani-Seiki, M. & Wittbrodt, J. Medaka and zebrafsh, an evolutionary twin study. Mech. Dev. 121, 629–637 (2004).

11. Kirchmaier, S., Naruse, K., Wittbrodt, J. & Loosli, F. Te genomic and genetic toolbox of the teleost medaka (Oryzias latipes). Genetics 119, 905–918 (2015).

12. Taniguchi, Y. et al. Generation of medaka gene knockout models by target-selected mutagenesis. Genome Biol. 7, R116 (2006).

13. Uemura, N. & Takahashi, R. Medaka fsh model of Parkinson’s disease. In Zebrafsh, Medaka, and other small fshes (eds Hirata, H. & Iida, A.) 235–249 (Springer, 2018).

14. Ueno, T. et al. In vivo magnetic resonance microscopy and hypothermic anaesthesia of a disease model in medaka. Sci. Rep. 6, 27188 (2016).

15. Prykhozhij, S. V. & Berman, J. N. Zebrafsh knock–ins swim into the mainstream. Dis. Model. Mech. 11, dmm037515 (2018).

16. Blancou, J. A history of the traceability of animals and animal products. Rev. Sci. Tech. 20, 413–425 (2001).

17. Bowling, M. B. et al. Review: Identifcation and traceability of cattle in selected countries outside of North America. Prof. Anim. Sci. 24, 287–294 (2008).

18. Wolf, K. S. and O’Neal, J. S., eds., PNAMP Special Publication: Tagging, Telemetry and Marking Measures for Monitoring Fish Populations–A compendium of new and recent science for use in informing technique and decision modalities: Pacifc Northwest Aquatic Monitoring Partnership Special Publication 2010–002, 194p (2010).

19. Lahiri, M., Tantipathananandh, C., Warungu, R., Rubenstein, D. I. & Berger-Wolf, T. Y. Biometric animal databases from feld photographs: Identifcation of individual zebra in the wild. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval (ICMR2011), 6, 1–8 (2011). https://doi.org/10.1145/1991996.1992002.

20. Mizroch, S. A., Beard, J. A. & Lynde, M. Computer assisted photo-identifcation of humpback whales. Rep. Int. Whal. Commn. 12, 63–70 (1990).

21. Guimaraes, M. et al. One step forward: Contrasting the efects of Toe clipping and PIT tagging on frog survival and recapture probability. Ecol. Evol. 4, 1480–1490 (2014).

22. Taf, R. A., Davisson, M. & Wiles, M. V. Know thy mouse. Trends Genet. 22, 649–653 (2006).

23. Cameron, J., Jacobson, C., Nilsson, K. & Rögnvaldsson, T. A biometric approach to laboratory rodent identifcation. Lab Anim. (NY) 36, 37–41. https://doi.org/10.1038/laban0307-36 (2007).

24. Shinya, M. & Sakai, N. Generations of highly homogeneous strains of zebrafsh through full sib–pair mating. G3: Genes Genomes Genet. 1, 377–386 (2011).

25. Field, A. Discovering statistics using IBM SPSS statistics (SAGE Publishing, 2013).

26. Kinoshita, M., Murata, K., Naruse, K. & Tanaka, M. Medaka biology, management, and experimental protocols (Wiley-Blackwell, 2009).

27. Leaf, R. T. et al. Life-history characteristics of Japanese medaka Oryzias latipes. Copeia 4, 559–565 (2011).

28. Fukamachi, S. et al. Mutations in the gene encoding B, a novel transporter protein, reduce melanin content in medaka. Nat. Genet. 28, 381–385 (2001).

29. Spivakov, M. et al. Genomic and phenotypic characterization of a wild Medaka population: towards the establishment of an isogenic population genetic resource in fsh. G3: Genes Genomes Genet. 4, 433–445 (2014).

30. Naruse, K. et al. Medaka genomics: A bridge between mutant phenotype and gene function. Mech. Dev. 121, 619–628 (2004).

31. Kimura, T. et al. Genetic analysis of craniofacial traits in the medaka. Genetics 9, 2379–2388 (2007).

32. Calippe, B. et al. Complement factor H and related proteins in age–related macular degeneration. C. R. Biol. 337, 178–184 (2014).

33. Suzuki-Niwa, H. Efects of castration and administration of methyl-testosterone on the nuptial coloration of the medaka. Oryzias latipes. Embryologia 8, 289–298 (1965).

34. Sköld, H. N. et al. Fish chromatophores-from molecular to animal behavior. Int. Rev. Cell Mol. Biol. 321, 171–219 (2016).

35. Prentice, E. F., Flagg, T. A., McCutcheon, C. S., Brastow, D. F. & Cross, D. C. Equipment, methods, and an automated data-entry station for PIT tagging. Am. Fish. Soc. Symp. 7, 335–340 (1990).

36. Bolland, J. D. et al. Evaluation of VIE and PIT tagging methods for juvenile cyprinid fshes. J. Appl. Ichthyol. 25, 381–386 (2009).

37. Jungwirth, A. et al. Long-term individual marking of small freshwater fsh: Te utility of visual implant elastomer tags. Behav. Ecol. Sociobiol. 73, 49 (2019).

38. Rácz, A. et al. Identifcation of individual zebrafsh (Danio rerio): A refned protocol for VIE tagging whilst considering animal welfare and the principles of the 3Rs. Animals 11, 616 (2021).

39. Frommen, J. G., Hanak, S., Schmidl, C. A. & Tünken, T. Visible implant elastomer tagging infuences social preferences of zebrafsh (Danio rerio). Behaviour 152, 1765–1777 (2015).

40. Utagawa, U., Higashi, S., Kamei, Y. & Fukamachi, S. Characterization of assortative mating in medaka: Mate discrimination cues and factors that bias sexual preference. Horm Behav. 84, 9–17 (2016).

41. Bishop, C. M. Pattern recognition and machine learning (Springer, 2006).

42. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to image J: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る