リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Harnessing Deep Learning to Analyze Cryptic Morphological Variability of Marchantia polymorpha」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Harnessing Deep Learning to Analyze Cryptic Morphological Variability of Marchantia polymorpha

Tomizawa, Yoko Minamino, Naoki Shimokawa, Eita Kawamura, Shogo Komatsu, Aino Hiwatashi, Takuma Nishihama, Ryuichi Ueda, Takashi Kohchi, Takayuki Kondo, Yohei 京都大学 DOI:10.1093/pcp/pcad117

2023.11

概要

Characterizing phenotypes is a fundamental aspect of biological sciences, although it can be challenging due to various factors. For instance, the liverwort Marchantia polymorpha is a model system for plant biology and exhibits morphological variability, making it difficult to identify and quantify distinct phenotypic features using objective measures. To address this issue, we utilized a deep-learning-based image classifier that can handle plant images directly without manual extraction of phenotypic features and analyzed pictures of M. polymorpha. This dioicous plant species exhibits morphological differences between male and female wild accessions at an early stage of gemmaling growth, although it remains elusive whether the differences are attributable to sex chromosomes. To isolate the effects of sex chromosomes from autosomal polymorphisms, we established a male and female set of recombinant inbred lines (RILs) from a set of male and female wild accessions. We then trained deep learning models to classify the sexes of the RILs and the wild accessions. Our results showed that the trained classifiers accurately classified male and female gemmalings of wild accessions in the first week of growth, confirming the intuition of researchers in a reproducible and objective manner. In contrast, the RILs were less distinguishable, indicating that the differences between the parental wild accessions arose from autosomal variations. Furthermore, we validated our trained models by an ‘eXplainable AI’ technique that highlights image regions relevant to the classification. Our findings demonstrate that the classifier-based approach provides a powerful tool for analyzing plant species that lack standardized phenotyping metrics.

参考文献

Akagi, T., Onishi, M., Masuda, K., Kuroki, R., Baba, K., Takeshita, K., et al.

(2020) Explainable deep learning reproduces a ‘professional eye’ on the

diagnosis of internal disorders in persimmon fruit. Plant Cell Physiol. 61:

1967–1973.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., Samek, W.,

et al. (2015) On pixel-wise explanations for non-linear classifier decisions

by layer-wise relevance propagation. PLoS One. 10: e0130140.

Bowman, J.L., Arteaga-Vazquez, M., Berger, F., Briginshaw, L.N., Carella,

P., Aguilar-Cruz, A., et al. (2022) The Renaissance and enlightenment

of Marchantia as a model system. Plant Cell 34: 3512–3542.

Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki, K., et al.

(2017) Insights into land plant evolution garnered from the Marchantia

polymorpha genome. Cell 171: 287–304.e15.

Chen, S., Zhou, Y., Chen, Y. and Gu, J. (2018) fastp: an ultra-fast all-in-one

FASTQ preprocessor. Bioinformatics 34: i884–i890.

Chitwood, D.H. and Sinha, N.R. (2016) Evolutionary and environmental

forces sculpting leaf development. Curr. Biol. 26: R297–R306.

Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O.,

et al. (2021) Twelve years of SAMtools and BCFtools. GigaScience 10:

giab008.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E. et al.

(2014) DeCAF: a deep convolutional activation feature for generic

visual recognition. In Proceedings of the 31st International Conference on Machine Learning. Edited by Xing, E.P. and Jebara, T. pp.

647–655. PMLR (Proceedings of Machine Learning Research), Beijing,

China.

Flores-Sandoval, E., Eklund, D.M., Bowman, J.L. and Bomblies, K. (2015) A

simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLoS

Genet. 11: e1005207.

Gamborg, O.L., Miller, R.A. and Ojima, K. (1968) Nutrient requirements

of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M.,

et al. (2020) Shortcut learning in deep neural networks. Nat. Mach. Intell.

2: 665–673.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A. and

Brendel, W. (2019) ImageNet-trained CNNs are biased towards texture;

increasing shape bias improves accuracy and robustness. In Proceedings

of Innternational Conference on Learning Representations (ICLR) 2019.

New Orleans, LA.

Gurevitch, J. and Hedges, L. (1993) Meta-analysis: combining the results

of independent experiments. In Design and Analysis of Ecological Experiments. Edited by Scheiner, S.M. and Gurevitch, J. pp. 378–398. Chapman

and Hall, New York.

Hendrycks, D., Basart, S., Mazeika, M., Zou, A., Kwon, J., Mostajabi, M., et al.

(2022) Scaling out-of-distribution detection for real-world settings. In

Proceedings of the 39th International Conference on Machine Learning.

Baltimore, MD.

He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep residual learning for image

recognition. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). Las Vegas, NV. pp. 770–778.

Downloaded from https://academic.oup.com/pcp/article/64/11/1343/7292451 by Kyoto University user on 25 January 2024

heatmaps for correctly predicted test images for each accession/sex/developmental day, we selected a representative heatmap for the image of the highest

value of the unnormalized logit, i.e. the raw output of the last fully connected layer in ResNet50. The logit values were used to quantify the degree

of representativeness of the input images, following recent studies on out-ofdistribution detection in deep learning models (Hendrycks et al. 2022; Vaze et al.

2022).

We also adopted XRAI (Kapishnikov et al. 2019) to obtain fine-grained

visualization of relevant regions for classification. We modified the original

XRAI implementation in TensorFlow (https://github.com/PAIR-code/saliency,

version 0.2.0) to analyze our PyTorch models. The selection criteria for representative heatmaps were the same as those for Grad-CAM.

We used IoU, also known as the Jaccard coefficient, in order to measure the degree of overlap between the aerial part of gemmalings and the

Grad-CAM/XRAI heatmaps. To this end, we binarized the normalized GradCAM/XRAI heatmaps with a threshold of 0.5. For the gemmalings, we utilized

the silhouette images (Fig. 5). For each binarized image and the corresponding

heatmap, IoU is defined as the area of intersection between the image and the

heatmap normalized by the area of union of the image and the heatmap.

Plant Cell Physiol. 64(11): 1343–1355 (2023) doi:https://doi.org/10.1093/pcp/pcad117

and visual attributes. In 2022 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). New Orleans, LA, pp. 19087–19097.

Ohashi, K., Makino, T.T., Arikawa, K. and Kudo, G. (2015) Floral colour

change in the eyes of pollinators: testing possible constraints and correlated evolution. Funct. Ecol. 29: 1144–1155.

Quinlan, A.R. and Hall, I.M. (2010) BEDTools: a flexible suite of utilities

for comparing genomic features. Bioinformatics 26: 841–842.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015)

ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115:

211–252.

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D.

(2017) Grad-CAM: visual explanations from deep networks via gradientbased localization. In 2017 IEEE International Conference on Computer

Vision (ICCV). Venice, Italy, pp. 618–626.

Sharif Razavian, A., Azizpour, H., Sullivan, J. and Carlsson, S. (2014) CNN features off-the-shelf : an astounding baseline for recognition. In Computer

Vision and Pattern Recognition (CVPR) 2014, DeepVision Workshop,

June 28, 2014. Columbus, Ohio.

Shimamura, M. (2016) Marchantia polymorpha: taxonomy phylogeny

and morphology of a model system. Plant Cell Physiol. 57: 230–256.

Singh, A.K., Ganapathysubramanian, B., Sarkar, S. and Singh, A. (2018) Deep

learning for plant stress phenotyping: trends and future perspectives.

Trends Plant Sci. 23: 883–898.

Solly, J.E., Cunniffe, N.J. and Harrison, C.J. (2017) Regional growth rate differences specified by apical notch activities regulate liverwort thallus shape.

Curr. Biol. 27: 16–26.

Vasimuddin, M., Misra, S., Li, H. and Aluru, S. (2019) Efficient architectureaware acceleration of BWA-MEM for multicore systems. In 2019 IEEE

International Parallel and Distributed Processing Symposium (IPDPS).

Rio de Janeiro, Brazil, pp. 314–324.

Vaze, S., Han, K., Vedaldi, A., and Zisserman, A. (2022) Open-set recognition: a good closed-set classifier is all you need? In Proceedings of International Conference on Learning Representations (ICLR) 2022. Virtual

Event, USA.

Yu, Y., Ouyang, Y., Yao, W. and Hancock, J. (2018) shinyCircos: an R/Shiny

application for interactive creation of Circos plot. Bioinformatics 34:

1229–1231.

Downloaded from https://academic.oup.com/pcp/article/64/11/1343/7292451 by Kyoto University user on 25 January 2024

Ishizaki, K., Chiyoda, S., Yamato, K.T. and Kohchi, T. (2008) Agrobacteriummediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. 49:

1084–1091.

Iwasaki, M., Kajiwara, T., Yasui, Y., Yoshitake, Y., Miyazaki, M., Kawamura, S.,

et al. (2021) Identification of the sex-determining factor in the liverwort

Marchantia polymorpha reveals unique evolution of sex chromosomes

in a haploid system. Curr. Biol. 31: 5522–5532.e7.

Kapishnikov, A., Bolukbasi, T., Viégas, F. and Terry, M. (2019) XRAI:

better attributions through regions. In 2019 IEEE/CVF International

Conference on Computer Vision (ICCV). Seoul, Korea (South), pp.

4947–4956.

Khorram, S., Lawson, T. and Fuxin, L. (2021) iGOS++: integrated

gradient optimized saliency by bilateral perturbations. In Proceedings of the Conference on Health, Inference, and Learning.

pp. 174–182. Association for Computing Machinery (CHIL’21),

New York, NY.

Kohchi, T., Yamato, K.T., Ishizaki, K., Yamaoka, S. and Nishihama, R. (2021)

Development and molecular genetics of Marchantia polymorpha. Annu.

Rev. Plant Biol. 72: 677–702.

Kubilius, J., Bracci, S. and Op de Beeck, H.P. (2016) Deep neural networks as

a computational model for human shape sensitivity. PLoS Comput. Biol.

12: e1004896.

Kutsuna, N., Higaki, T., Matsunaga, S., Otsuki, T., Yamaguchi, M., Fujii,

H., et al. (2012) Active learning framework with iterative clustering

for bioimage classification. Nat. Commun. 3: 1032.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009)

The sequence alignment/map format and SAMtools. Bioinformatics 25:

2078–2079.

Maaten, L.V.D. and Hinton, G.E. (2008) Visualizing data using t-SNE. J. Mach.

Learn. Res. 9: 2579–2605.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky,

A., et al. (2010) The Genome Analysis Toolkit: a MapReduce framework

for analyzing next-generation DNA sequencing data. Genome Res. 20:

1297–1303.

Moayeri, M., Pope, P., Balaji, Y. and Feizi, S. (2022) A comprehensive study

of image classification model sensitivity to foregrounds, backgrounds,

1355

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る