リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Breed and feed affect amino acid contents of egg yolk and eggshell color in chickens」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Breed and feed affect amino acid contents of egg yolk and eggshell color in chickens

Mori Hiroki Takaya Masahiro Nishimura Kenji Goto Tatsuhiko 帯広畜産大学

2021.01.01

概要

Genetic and environmental factors regulate hen egg traits. To demonstrate the possibility of producing designer eggs through genetic and environmental factors, we investigated the effects of breed and feed on egg traits using 2 chicken breeds, Rhode Island Red (RIR) and Australorp (AUS), and 2 feeds, mixed feed and fermented feed. A total of 40 eggs were collected at 33 wk of age (0 mo under mixed feed) and 1, 1.5, and 2 mo after switching to fermented feed. Two-way ANOVA mixed design was used to evaluate 10 egg traits: weight, length of the long axis, length of the short axis, eggshell weight, yolk weight, albumen weight, eggshell thickness, eggshell lightness, redness, and yellowness, and 19 yolk amino acids. The results revealed significant breed effects on eggshell redness and yellowness, with higher values of these traits in RIR eggs compared with AUS eggs. There was a significant effect of feed on eggshell lightness, with a lighter color observed under fermented feed compared with mixed feed. Significant effects of breed and breed × feed were found for yolk cysteine content. Eggs from AUS had a higher yolk cysteine content than those from RIR. The cysteine content in AUS eggs increased gradually after starting fermented feed, although RIR remained relatively constant over time. These findings suggest that it is possible to produce designer eggs with enriched components, including yolk amino acids, by adjusting both genetic and environmental factors. This represents a first step in understanding the mechanisms underlying the production of value-added eggs in chickens.

この論文で使われている画像

参考文献

294

295

FAOSTAT. 2019. http://www.fao.org/faostat/en/#home.

296

Fraeye, I., C. Bruneel, C. Lemahieu, J. Buyse, K. Muylaert, and I. Foubert. 2012.

297

Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Res. Int.

298

48:961-969.

299

Franz, V. H., and G. R. Loftus. 2012. Standard errors and confidence intervals in

300

within-subjects designs: Generalizing Loftus and Masson (1994) and avoiding the

301

biases of alternative accounts. Psychon. Bull Rev. 19:395-404.

302

Goto, T., A. Ishikawa, M. Yoshida, N. Goto, T. Umino, M. Nishibori, and M.

303

Tsudzuki. 2014. Quantitative trait loci mapping for external egg traits in F2 chickens. J.

304

Poult. Sci. 51:118-129.

305

Goto, T., A. Ishikawa, M. Nishibori, and M. Tsudzuki. 2019. A longitudinal

306

quantitative trait locus mapping of chicken growth traits. Mol. Genet. Genomics

307

294:243-252.

308

309

Goto, T., and M. Tsudzuki. 2017. Genetic mapping of quantitative trait loci for egg

production and egg quality traits in chickens: a review. J. Poult. Sci. 54:1-12.

310

Hillel, J., M. A. Groenen, M. Tixier-Boichard, A. B. Korol, L. David, V. M. Kirzhner,

311

Burke, T., A. Barre-Dirie, R. P. Crooijmans, K. Elo, M. W. Feldman, P. J. Freidlin, A.

312

Mäki-Tanila, M. Oortwijn, P. Thomson, A. Vignal, K. Wimmers, and S. Weigend. 2003.

313

Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools.

314

Genet. Sel. Evol. 35: 533-557.

315

Hunger Map. 2018. https://www.wfp.org/content/2018-hunger-map.

316

Jayasena, D. D., S. Jung, A. U. Alahakoon, K. C. Nam, J. H. Lee, and C. Jo. 2015.

317

Bioactive and taste-related compounds in defatted freeze-dried chicken soup made from

15

318

two different chicken breeds obtained at retail. J. Poult. Sci. 52:156-165.

319

Karsten, H. D., P. H. Patterson, R. Stout, and G. Crews. 2010. Vitamins A, E and

320

fatty acid composition of the eggs of caged hens and pastured hens. Renew. Agr. Food

321

Syst. 25:45-54.

322

Mulder, H. A., J. Visscher, and J. Fablet. 2016. Estimating the purebred-crossbred

323

genetic correlation for uniformity of eggshell color in laying hens. Genet. Sel. Evol.

324

48:39.

325

Nikiforuk, A., A. Potasiewicz, T. Kos, and P. Popik. 2016. The combination of

326

memantine and galantamine improves cognition in rats: the synergistic role of the α7

327

nicotinic acetylcholine and NMDA receptors. Behav. Brain Res. 313:214-218.

328

329

Nimalaratne, C., D. Lopes-Lutz, A. Schieber, and J. Wu. 2011. Free aromatic amino

acids in egg yolk show antioxidant properties. Food Chem. 129:155-161.

330

Ohta, Y., M. T. Kidd, and T. Ishibashi. 2001. Embryo growth and amino acid

331

concentration profiles of broiler breeder eggs, embryos, and chicks after in ovo

332

administration of amino acids. Poult. Sci. 80:1430-1436.

333

Olejnik, S., and J. Algina. 2003. Generalized eta and omega squared statistics:

334

measures of effect size for some common research designs. Psychol. Methods

335

4:434-447.

336

Pandit, R. J., A. T. Hinsu, N. V. Patel, P. G. Koringa, S. J. Jakhesara, J. R. Thakkar, T.

337

M. Shah, G. Limon, A. Psifidi, J. Guitian, D. A. Hume, F. M. Tomley, D. N. Rank, M.

338

Raman, K. G. Tirumurugaan, D. P. Blake, and C. G. Joshi. Microbial diversity and

339

community composition of caecal microbiota in commercial and indigenous Indian

340

chickens determined using 16s rDNA amplicon sequencing. Microbiome. 6:115.

341

R Core Team. 2018. R: A language and environment for statistical computing. R

16

342

Foundation

343

https://www.R-project.org/.

344

345

346

347

348

349

350

351

for

Statistical

Computing,

Vienna,

Austria.

URL

Roberts, J. 2004. Factors affecting egg internal quality and egg shell quality in laying

hens. J. Poult. Sci. 41:161-177.

Samiullah, S., J. R. Roberts, and K. Chousalkar. 2015. Eggshell color in brown-egg

laying hens – a review. Poult. Sci. 94:2566-2575.

Sheppy, A. 2011. The colour of domestication and designer chicken. Opt. Laser Tech.

43:295-301.

Wilson, P. B. 2017. Recent advances in avian egg science: A review. Poult. Sci.

96:3747-3754.

352

Wolc, A., I. M. S. White, W. G. Hill, and V. E. Olori. 2010. Inheritance of

353

hatchability in broiler chickens and its relationship to egg quality traits. Poult. Sci.

354

89:2334-2340.

355

Wolc, A., J. Arango, P. Settar, N. P. O’Sullivan, V. E. Olori, I. M. S. White, W. G.

356

Hill, and J. C. M. Dekkers. 2012. Genetic parameters of egg defects and egg quality in

357

layer chickens. Poult. Sci. 91:1292-1298.

358

Yin, J. D., X. G. Shang, D. F. Li, F. L. Wang, Y. F. Guan, and Z. Y. Wang. 2008.

359

Effects of dietary conjugated linoleic acid on the fatty acid profile and cholesterol

360

content of egg yolks from different breeds of layers. Poult. Sci. 87:284-290.

361

Zaheer, K. 2015. An updated review on chicken eggs: production, consumption,

362

management aspects and nutritional benefits to human health. Food Nutr. Sci.

363

6:1208-1220.

364

Zhang, L. C., Z. H. Ning, G. Y. Xu, Z. C. Hou, and N. Yang. 2005. Heritabilities and

365

genetic and phenotypic correlations of egg quality traits in brown-egg dwarf layers.

17

366

Poult. Sci. 84:1209-1213.

367

368

FIGURE LEGENDS

369

370

Figure 1. Experimental design.

371

Eggs from Rhode Island Red (RIR) and Australorp (AUS) hens fed mixed feed were

372

collected at 33 weeks of age (0 month). After switching to fermented feed at 34 weeks

373

of age, eggs from RIR and AUS were collected 1-month, 1.5-months, and 2-months

374

later. Five eggs were collected at four different stages from each breed; 10 egg traits and

375

19 yolk amino acid traits were measured from 40 eggs in total. These data were

376

analyzed by two-way mixed design analysis of variance (ANOVA) with breed group as

377

the between-subjects factor and feed group as the within-subject factor.

378

379

18

Table 1. Analysis of ingredients in mixed feed and fermented feed1

Fermented

Ingredient

Mixed feed

feed

Crude protein (%)

Binding protein (cp%)

Neutral-detergent insoluble protein

(CP%)

Neutral-detergent fiber (%)

Acid-detergent fiber (%)

Acid-detergent lignin (%)

Starch (%)

Nonfibrous carbohydrate (%)

Crude fat (%)

Crude ash (%)

Calcium (%)

Phosphate (%)

Magnesium (%)

Potassium (%)

TDN (%)

NE l (Mcal/kg)

NE m (Mcal/kg)

NE g (Mcal/kg)

Cell content (%)

Ingredient

Mixed

feed

9.40

0.66

13.90

0.85

0.84

0.39

0.65

1.62

0.96

0.35

0.83

0.07

0.81

0.85

1.02

1.30

2.80

1.22

0.71

11.90

171.70

1.39

0.33

0.85

1.49

0.87

0.34

0.95

0.17

1.11

0.93

1.56

1.36

2.99

1.35

0.76

36.20

2321.00

17.50

3.50

20.60

3.40

Total fiber (%)

Arginine (%)

13.20

13.00

5.90

1.60

45.00

51.90

5.90

14.00

4.06

0.54

0.19

0.73

76.50

1.76

1.88

1.24

76.70

20.90

16.20

6.40

2.10

37.50

46.80

6.90

13.80

4.69

1.22

0.43

1.10

76.90

1.81

1.92

1.28

72.30

Glycine (%)

Histidine (%)

Isoleucine (%)

Leucine (%)

Lysine (%)

Methionine (%)

Phenylalanine (%)

Tyrosine (%)

Valine (%)

Serine (%)

Alanine (%)

Aspartic acid (%)

Glutamic acid (%)

Proline (%)

Threonine (%)

Water (%)

Vitamin A (β-carotene) (IU/kg)

%, percentage in dry matter.

380

381

19

Fermented feed

Table 2. Traits of eggs from Rhode Island Red and Australorp hens at four different stages

Rhode Island Red (RIR)

Traits

Egg weight (g)

length of long axis of the

egg (mm)

length of short axis of the

egg (mm)

Yolk weight (g)

Eggshell weight (g)

Albumen weight (g)

Eggshell thickness (mm)

Eggshell color L*

Eggshell color a*

Eggshell color b*

Mixed

Australorp (AUS)

Fermented

month

month

53.4 ±

2.4

55.9 ±

2.1

41.9 ±

1.1

15.7 ±

0.7

6.1 ±

0.6

29.7 ±

1.7

0.39 ±

0.03

62.7 ±

4.3

14.2 ±

2.7

22.3 ±

2.9

52.2 ±

2.6

56.6 ±

1.6

41.1 ±

1.3

16.8 ±

1.0

6.3 ±

0.7

26.1 ±

1.0

0.36 ±

0.04

65.6 ±

4.9

12.6 ±

3.6

21.5 ±

3.4

1.5

month

53.1 ±

2.0

56.5 ±

2.5

41.6 ±

1.1

16.0 ±

1.1

6.4 ±

0.7

29.5 ±

2.2

0.42 ±

0.04

67.3 ±

5.7

11.2 ±

4.4

20.1 ±

4.5

Mixed

month

54.6 ±

3.1

57.7 ±

1.4

41.7 ±

1.1

17.0 ±

1.3

6.7 ±

0.6

29.5 ±

2.2

0.40 ±

0.06

65.6 ±

4.2

12.4 ±

2.3

20.4 ±

2.1

Fermented

month

month

49.2 ±

3.7

54.9 ±

1.7

41.2 ±

1.1

13.3 ±

0.9

6.1 ±

0.5

28.3 ±

3.5

0.40 ±

0.04

70.4 ±

1.8

9.2 ±

1.1

15.2 ±

1.5

50.2 ±

5.1

54.9 ±

1.5

41.1 ±

1.1

14.2 ±

1.0

6.5 ±

0.6

29.9 ±

2.3

0.45 ±

0.04

73.6 ±

1.7

7.1 ±

0.9

12.8 ±

1.7

382

383

384

20

P-value from ANOVA

Interactio

Main effect

n effect

1.5

month

54.8 ±

3.5

56.9 ±

1.8

41.5 ±

1.3

15.5 ±

0.7

6.8 ±

0.6

30.4 ±

4.3

0.41 ±

0.03

73.7 ±

1.9

6.6 ±

1.3

12.0 ±

1.7

month

51.6 ±

4.6

56.9 ±

1.9

41.9 ±

1.7

16.0 ±

1.8

6.9 ±

0.9

27.2 ±

4.1

0.41 ±

0.03

74.5 ±

2.5

6.9 ±

1.2

12.8 ±

2.0

Breed

Feed

Breed*

Feed

0.821

0.155

0.575

0.556

0.059

0.121

0.750

0.381

0.090

0.127

0.215

0.885

0.446

0.807

0.993

0.999

0.543

0.371

0.092

0.458

0.900

0.083

0.021

0.934

2.0E-04

0.068

0.700

8.8E-11

0.106

0.351

Table 3. Yolk amino acid traits of eggs collected from Rhode Island Red and Australorp hens at four different stages

Yolk amino acid

Rhode Island Red (RIR)

Australorp (AUS)

(µg/ml)

Aspartic acid

Glutamic acid

Asparagine

Serine

Glutamine

Glycine

Histidine

Arginine

Threonine

Alanine

Proline

Tyrosine

Valine

Methionine

Mixed

month

21.9 ±

2.7

60.6 ±

6.4

13.0 ±

1.7

24.3 ±

3.0

22.7 ±

2.9

8.4 ±

0.9

3.7 ±

0.9

31.8 ±

4.3

23.3 ±

2.5

14.5 ±

1.9

16.0 ±

1.7

28.4 ±

3.5

23.8 ±

2.4

8.8 ±

1.1

Fermented

month

26.3 ±

10.5

81.1 ±

32.1

15.6 ±

6.5

30.7 ±

12.2

26.6 ±

10.7

11.3 ±

4.7

6.5 ±

3.0

42.0 ±

17.1

29.3 ±

11.9

18.8 ±

7.7

20.3 ±

7.3

36.9 ±

15.0

29.7 ±

11.6

10.9 ±

4.3

1.5

months months

20.3 ± 19.5 ±

11.9

2.0

64.7 ± 59.8 ±

34.9

4.9

12.8 ± 11.8 ±

7.2

1.5

24.6 ± 22.6 ±

13.5

2.5

24.3 ± 23.6 ±

10.8

2.4

9.1 ±

8.2 ±

5.3

1.1

4.5 ±

3.0 ±

3.6

1.9

32.2 ± 28.6 ±

19.5

4.5

23.6 ± 21.9 ±

13.1

2.3

14.9 ± 13.7 ±

8.8

2.1

16.5 ± 16.3 ±

8.1

1.6

28.8 ± 24.8 ±

16.5

3.6

24.1 ± 22.6 ±

12.9

2.7

9.1 ±

8.5 ±

4.7

1.2

Mixed

Fermented

month

15.7 ±

3.3

58.0 ±

4.8

14.2 ±

1.0

24.0 ±

1.9

26.0 ±

1.4

8.9 ±

0.7

12.7 ±

1.0

35.2 ±

3.5

15.4 ±

0.9

14.6 ±

1.3

13.6 ±

1.1

30.9 ±

2.2

22.6 ±

1.0

10.3 ±

0.9

1.5

month months months

15.7 ± 19.4 ± 22.7 ±

2.8

13.6

14.2

59.7 ± 61.9 ± 59.8 ±

16.9

23.1

22.1

13.8 ± 13.5 ± 12.8 ±

2.8

2.4

2.3

23.3 ± 23.1 ± 21.8 ±

6.0

2.7

3.3

26.2 ± 26.1 ± 23.0 ±

5.1

3.6

4.8

8.6 ±

8.9 ±

8.9 ±

2.0

1.2

1.1

10.6 ± 12.1 ± 11.2 ±

2.0

1.1

0.8

33.9 ± 34.1 ± 27.5 ±

6.8

5.6

14.6

17.9 ± 15.2 ± 14.6 ±

8.3

2.1

2.6

14.3 ± 14.6 ± 13.8 ±

3.1

2.6

2.3

14.7 ± 14.2 ± 14.1 ±

4.3

2.1

2.1

30.1 ± 30.4 ± 30.7 ±

4.9

4.6

3.8

24.2 ± 23.2 ± 22.9 ±

5.6

3.9

3.2

10.1 ± 10.0 ±

9.0 ±

2.0

1.9

2.3

21

P-value from ANOVA

Interaction

Main effect

effect

Breed*

Breed Feed

Feed

0.683

0.822

0.760

0.451

0.493

0.931

0.390

0.544

0.907

0.756

0.403

0.984

0.726

0.868

0.514

0.737

0.421

0.968

0.082

0.338

0.222

0.719

0.307

0.754

0.803

0.284

0.957

0.730

0.512

0.947

0.940

0.341

0.953

0.725

0.344

0.777

0.823

0.391

0.900

0.891

0.463

0.894

Table 3. (Continued)

Cysteine

Isoleucine

Leucine

Phenylalanine

Lysine

0.4 ±

0.1

19.7 ±

2.3

39.4 ±

5.1

23.6 ±

1.8

32.7 ±

5.2

0.8 ±

0.9

24.9 ±

9.4

49.2 ±

19.8

28.7 ±

9.2

45.5 ±

20.4

0.3 ±

0.3

20.1 ±

10.4

39.4 ±

22.0

23.6 ±

10.2

35.8 ±

22.3

0.7 ±

0.9

19.1 ±

2.1

36.2 ±

4.9

21.6 ±

1.8

30.9 ±

5.4

4.2 ±

0.4

18.0 ±

1.2

33.6 ±

1.8

22.4 ±

1.7

37.8 ±

2.8

385

386

387

388

389

390

391

392

393

394

22

3.3 ±

1.7

19.4 ±

4.6

35.6 ±

8.9

23.3 ±

4.5

37.5 ±

8.8

4.1 ±

0.9

18.4 ±

3.2

32.6 ±

6.1

21.6 ±

3.8

36.7 ±

5.4

5.1 ±

3.3

18.7 ±

2.6

32.6 ±

4.5

22.2 ±

2.1

35.8 ±

5.1

0.041

0.329

0.021

0.890

0.299

0.882

0.981

0.356

0.930

0.749

0.299

0.875

0.677

0.379

0.978

395

396

397

Figure 1

398

399

23

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る