リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Metabolomics approach reveals the effects of breed and feed on the composition of chicken eggs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Metabolomics approach reveals the effects of breed and feed on the composition of chicken eggs

Goto Tatsuhiko Mori Hiroki Shiota Shunsuke Tomonaga Shozo 帯広畜産大学

2020.01.10

概要

Chicken eggs provide essential nutrients to consumers around the world. Although both genetic and environmental factors influence the quality of eggs, it is unclear how these factors affect the egg traits including egg metabolites. In this study, we investigated breed and feed effects on 10 egg traits, using two breeds (Rhode Island Red and Australorp) and two feed conditions (mixed feed and fermented feed). We also used gas chromatography-mass spectrometry (GC-MS/MS) to analyze 138 yolk and 132 albumen metabolites. Significant breed effects were found on yolk weight, eggshell weight, eggshell colors, and one albumen metabolite (ribitol). Three yolk metabolites (erythritol, threitol, and urea) and 12 albumen metabolites (erythritol, threitol, ribitol, linoleic acid, isoleucine, dihydrouracil, 4-hydroxyphenyllactic acid, alanine, glycine, N-butyrylglycine, pyruvic acid, and valine) were significantly altered by feed, and a significant interaction between breed and feed was discovered in one albumen metabolite (N-butyrylglycine). Yolk and albumin had higher levels of sugar alcohols when hens were fed a fermented diet, which indicates that sugar alcohol content can be transferred from diet into eggs. Linoleic acid was also enriched in albumen under fermented feed conditions. This study shows that yolk and albumen metabolites will be affected by breed and feed, which is the first step towards manipulating genetic and environmental factors to create “designer eggs.”

参考文献

1.

2.

3.

4.

5.

6.

7.

FAOSTAT. 2019. Available online: http://www.fao.org/faostat/en/#home (accessed on 20 September 2019).

Goto, T.; Fernandes, A.F.A.; Tsudzuki, M.; Rosa, G.J.M. Causal phenotypic networks for egg traits in an F2

chicken population. Mol. Genet. Genom. 2019, 1–8. [CrossRef] [PubMed]

Hunger Map. 2018. Available online: https://www.wfp.org/content/2018-hunger-map (accessed on

20 September 2019).

Kralik, G.; Kralik, Z. Poultry products enriched with nutricines have beneficial effects on human health.

Med. Glas. 2017, 14, 1–7. [CrossRef]

Laudodio, V.; Lorusso, V.; Lastella, N.M.B.; Dhama, K.; Karthik, K.; Tiwari, R.; Alam, G.M.; Tufarelli, V.

Enhancement of nutraceutical value of table eggs through poultry feeding strategies. Int. J. Pharm. 2015, 11,

201–212. [CrossRef]

Rajasekaran, A.; Kalaivani, M. Designer foods and their benefits: A review. J. Food Sci. Technol. 2013, 50,

1–16. [CrossRef]

Zaheer, K. An updated review on chicken eggs: Production, consumption, management aspects and

nutritional benefits to human health. Food Nutr. Sci. 2015, 6, 1208–1220. [CrossRef]

Metabolites 2019, 9, 224

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

11 of 12

Alagawany, M.; Farag, M.R.; Dhama, K.; Patra, A. Nutritional significance and health benefits of designer

eggs. Worlds Poult. Sci. J. 2018, 74, 317–330. [CrossRef]

Roberts, J. Factors affecting egg internal quality and egg shell quality in laying hens. J. Poult. Sci. 2004, 41,

161–177. [CrossRef]

Wilson, P.B. Recent advances in avian egg science: A review. Poult. Sci. 2017, 96, 3747–3754. [CrossRef]

[PubMed]

Goto, T.; Tsudzuki, M. Genetic mapping of quantitative trait loci for egg production and egg quality traits in

chickens: A review. J. Poult. Sci. 2017, 54, 0160121. [CrossRef]

Wolc, A.; White, I.M.S.; Hill, W.G.; Olori, V.E. Inheritance of hatchability in broiler chickens and its relationship

to egg quality traits. Poult. Sci. 2010, 89, 2334–2340. [CrossRef]

Wolc, A.; Arango, J.; Settar, P.; O’Sullivan, N.P.; Olori, V.E.; White, I.M.S.; Hill, W.G.; Dekkers, J.C.M. Genetic

parameters of egg defects and egg quality in layer chickens. Poult. Sci. 2012, 91, 1292–1298. [CrossRef]

[PubMed]

Zhang, L.C.; Ning, Z.H.; Xu, G.Y.; Hou, Z.C.; Yang, N. Heritabilities and genetic and phenotypic correlations

of egg quality traits in brown-egg dwarf layers. Poult. Sci. 2005, 84, 1209–1213. [CrossRef] [PubMed]

Fraeye, I.; Bruneel, C.; Lemahieu, C.; Buyse, J.; Muylaert, K.; Foubert, I. Dietary enrichment of eggs with

omega-3 fatty acids: A review. Food Res. Int. 2012, 48, 961–969. [CrossRef]

Surai, P.F.; Sparks, N.H.C. Designer eggs: From improvement of egg composition to functional food. Trends.

Food Sci. Technol. 2001, 12, 7–16. [CrossRef]

Yin, J.D.; Shang, X.G.; Li, D.F.; Wang, F.L.; Guan, Y.F.; Wang, Z.Y. Effects of dietary conjugated linoleic acid on

the fatty acid profile and cholesterol content of egg yolks from different breeds of layers. Poult. Sci. 2008, 87,

284–290. [CrossRef] [PubMed]

Mori, H.; Takaya, M.; Nishimura, K.; Goto, T. Breed and feed affect amino acid contents of egg yolk and

eggshell color in chickens. Poult. Sci. 2019. [CrossRef]

Weckwerth, W. Metabolomics in systems biology. Annu. Rev. Plant Biol. 2003, 54, 669–689. [CrossRef]

[PubMed]

Griffiths, W.J.; Koal, T.; Wang, Y.; Kohl, M.; Enot, D.P.; Deigner, H.P. Targeted metabolomics for biomarker

discovery. Angew. Chem. Int. Ed. Engl. 2010, 26, 5426–5445. [CrossRef]

Li, B.; He, X.; Jia, W.; Li, H. Novel applications of metabolomics in personalized medicine: A mini-review.

Molecules 2017, 22, 1173. [CrossRef]

Wishart, D.S. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol.

2008, 19, 482–493. [CrossRef]

Cubero-Leon, E.; Peñalver, R.; Maquet, A. Review on metabolomics for food authentication. Food Res. Int.

2014, 60, 95–107. [CrossRef]

Bundy, J.G.; Davey, M.P.; Viant, M.R. Environmental metabolomics: A critical review and future perspectives.

Metabolomics 2009, 5, 3. [CrossRef]

Macel, M.; Van Dam, N.M.; Keurentjes, J.J. Metabolomics: The chemistry between ecology and genetics.

Mol. Ecol. Resour. 2010, 10, 583–593. [CrossRef] [PubMed]

Goto, T.; Kubota, Y.; Toyoda, A. Plasma and liver metabolic profiles in mice subjected to subchronic and mild

social defeat stress. J. Proteome Res. 2015, 14, 1025–1032. [CrossRef] [PubMed]

Goto, T.; Tomonaga, S.; Toyoda, A. Effects of diet quality and psychosocial stress on the metabolic profiles of

mice. J. Proteome Res. 2017, 16, 1857–1867. [CrossRef] [PubMed]

Goldansaz, S.A.; Guo, A.C.; Sajed, T.; Steele, M.A.; Plastow, G.S.; Wishart, D.S. Livestock metabolomics and

the livestock metabolome: A systematic review. PLoS ONE 2017, 12, e0177675. [CrossRef] [PubMed]

Takemoto, S.; Tomonaga, S.; Funaba, M.; Matsui, T. Effect of long-distance transportation on serum metabolic

profiles of steer calves. Anim. Sci. J. 2017, 88, 1970–1978. [CrossRef]

Tomonaga, S.; Okuyama, H.; Tachibana, T.; Makino, R. Effects of high ambient temperature on plasma

metabolomic profiles in chicks. Anim. Sci. J. 2018, 89, 448–455. [CrossRef]

Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.;

Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acid Res. 2017, 46,

D608–D617. [CrossRef]

Goto, T.; Ishikawa, A.; Nishibori, M.; Tsudzuki, M. A longitudinal quantitative trait locus mapping of chicken

growth traits. Mol. Genet. Genom. 2019, 294, 243–252. [CrossRef]

Metabolites 2019, 9, 224

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

12 of 12

Goto, T.; Ishikawa, A.; Yoshida, M.; Goto, N.; Umino, T.; Nishibori, M.; Tsudzuki, M. Quantitative trait loci

mapping for external egg traits in F2 chickens. J. Poult. Sci. 2014, 51, 118–129. [CrossRef]

Goto, T.; Shiraishi, J.I.; Bungo, T.; Tsudzuki, M. Characteristics of egg-related traits in the Onagadori (Japanese

Extremely Long Tail) breed of chickens. J. Poult. Sci. 2015, 52, 81–87. [CrossRef]

Sirri, F.; Zampiga, M.; Berardinelli, A.; Meluzzi, A. Variability and interaction of some egg physical and

eggshell quality attributes during the entire laying hen cycle. Poult. Sci. 2018, 97, 1818–1823. [CrossRef]

[PubMed]

Grembecka, M. Sugar alcohols—their role in the modern world of sweeteners: A review. Eur. Food Res. Technol.

2015, 241, 1–14. [CrossRef]

Wisselink, H.W.; Weusthuis, R.A.; Eggink, G.; Hugenholtz, J.; Grobben, G. Mannitol production by lactic acid

bacteria: A review. Int. Dairy J. 2002, 12, 151–161. [CrossRef]

Bernt, W.O.; Borzelleca, J.F.; Flamm, G.; Munro, I.C. Erythritol: A review of biological and toxicological

studies. Regul. Toxicol. Pharm. 1996, 24, S191–S197. [CrossRef] [PubMed]

Malcicka, M.; Visser, B.; Ellers, J. An evolutionary perspective on linoleic acid synthesis in animals. Evol. Biol.

2018, 45, 15–26. [CrossRef] [PubMed]

Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional

and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [CrossRef] [PubMed]

Stanislaus, A.; Guo, K.; Li, L. Development of an isotope labeling ultra-high performance liquid

chromatography mass spectrometric method for quantification of acylglycines in human urine.

Anal. Chim. Acta 2012, 750, 161–172. [CrossRef]

Cermáková,

M.; Pelantová, H.; Neprašová, B.; Šedivá, B.; Maletínská, L.; Kuneš, J.; Tomášová, P.; Železná, B.;

Kuzma, M. Metabolomic study of obesity and its treatment with palmitoylated prolactin-releasing peptide

analog in spontaneously hypertensive and normotensive rats. J. Proteome Res. 2019, 18, 1735–1750. [CrossRef]

Lai, Z.; Tsugawa, H.; Wohlgemuth, G.; Mehta, S.; Mueller, M.; Zheng, Y.; Ogiwara, A.; Meissen, J.;

Showalter, M.; Takeuchi, K.; et al. Identifying metabolites by integrating metabolome databases with mass

spectrometry cheminformatics. Nat. Methods 2018, 15, 53–56. [CrossRef] [PubMed]

Tsugawa, H.; Kanazawa, M.; Ogiwara, A.; Arita, M. MRMPROBS suite for metabolomics using large-scale

MRM assays. Bioinformatics 2014, 30, 2379–2380. [CrossRef] [PubMed]

Olejnik, S.; Algina, J. Generalized eta and omega squared statistics: Measures of effect size for some common

research designs. Psychol. Methods 2003, 4, 434–447. [CrossRef] [PubMed]

Franz, V.H.; Loftus, G.R. Standard errors and confidence intervals in within-subjects designs: Generalizing

Loftus and Masson (1994) and avoiding the biases of alternative accounts. Psychon. Bull. Rev. 2012, 19,

395–404. [CrossRef] [PubMed]

Nikiforuk, A.; Potasiewicz, A.; Kos, T.; Popik, P. The combination of memantine and galantamine improves

cognition in rats: The synergistic role of the α7 nicotinic acetylcholine and NMDA receptors. Behav. Brain Res.

2016, 313, 214–218. [CrossRef] [PubMed]

R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing:

Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 20 September 2019).

Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to

multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 298–300. [CrossRef]

McClay, J.L.; Adkins, D.E.; Vunck, S.A.; Batman, A.M.; Vann, R.E.; Clark, S.L.; Beardsley, P.M.; van den

Oord, E.J. Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with

methamphetamine exposure. Metabolomics 2013, 9, 392–402. [CrossRef]

Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.; Forslund, K.;

Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human gut microbes impact host serum metabolome and insulin

sensitivity. Nature 2016, 535, 376–381. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る