リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Unique patterns of lower respiratory tract microbiota are associated with inflammation and hospital mortality in acute respiratory distress syndrome」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Unique patterns of lower respiratory tract microbiota are associated with inflammation and hospital mortality in acute respiratory distress syndrome

京 道人 広島大学

2020.03.23

概要

Acute respiratory distress syndrome (ARDS) is a fatal
disease that causes severe injury to alveolar epithelial
cells and subsequent severe respiratory failure due to
lung fibrosis, which results in high mortality rates of up
to 40%. Approximately 10% of patients admitted to intensive care units (ICUs) are reported to have ARDS [1].
Therefore, ARDS is one of the most severe problems in
the intensive care setting; its onset mechanisms must be
elucidated, and novel therapeutic methods must be
developed.
New methods have enabled analyzing the respiratory
microbiota that cannot be described by conventional
culture methods [2–5]. Consequently, the respiratory
microbiotas have been reported in patients with various
respiratory diseases, such as acute exacerbation of interstitial pneumonia (IP), chronic obstructive pulmonary
disease (COPD) and cystic fibrosis (CF) [6–10]. In ARDS
patients with sepsis, bacteria in the gastrointestinal tract
become enriched in the lower respiratory tract (LRT)
[11], suggesting that interactions occur between the LRT
and the gastrointestinal tract. In addition, analysis of the
lung microbiota in patients with trauma showed that
ARDS occurrence was associated with increased Enterobacteriaceae [12]. Formation of the lung microbiota is
also involved in the immune response [13–15]. However,
the specific microbiome in the LRT related to morbidity
and mortality in the LRT of ARDS patients remains
unclear.
This study aimed to clarify whether the microbiota in
the LRT is associated with ARDS prognosis and the severity of systemic inflammation by using next-generation
sequencing, estimating the bacterial load in the bronchoalveolar lavage fluid (BALF), and measuring the serum
and BALF cytokine levels. ...

この論文で使われている画像

参考文献

1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al.

Epidemiology, patterns of care, and mortality for patients with acute

respiratory distress syndrome in intensive care units in 50 countries. JAMA.

2016;315:788–800.

2. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al.

Topographical continuity of bacterial populations in the healthy human

respiratory tract. Am J Respir Crit Care Med. 2011;184:957–63.

Kyo et al. Respiratory Research

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

(2019) 20:246

Garzoni C, Brugger SD, Qi W, Wasmer S, Cusini A, Dumont P, et al. Microbial

communities in the respiratory tract of patients with interstitial lung disease.

Thorax. 2013;68:1150–6.

Bousbia S, Papazian L, Saux P, Forel JM, Auffray JP, Martin C, et al. Repertoire

of intensive care unit pneumonia microbiota. PLoS One. 2012;7:e32486.

Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR,

Huffnagle GB, et al. Bacterial topography of the healthy human lower

respiratory tract. MBio. 2017;8. https://doi.org/10.1128/mBio.02287-16.

Han MK, Zhou Y, Murray S, Tayob N, Noth I, Lama VN, et al. Lung

microbiome and disease progression in idiopathic pulmonary fibrosis: an

analysis of the COMET study. Lancet Respir Med. 2014;2:548–56.

Molyneaux PL, Cox MJ, Willis-Owen SA, Mallia P, Russell KE, Russell AM, et al.

The role of bacteria in the pathogenesis and progression of idiopathic

pulmonary fibrosis. Am J Respir Crit Care Med. 2014;190:906–13.

O'Dwyer DN, Ashley SL, Gurczynski SJ, Xia M, Wilke C, Falkowski NR, et al.

Lung microbiota contribute to pulmonary inflammation and disease

progression in pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199:

1127–38.

Leitao Filho FS, Alotaibi NM, Ngan D, Tam S, Yang J, Hollander Z, et al.

Sputum microbiome is associated with 1-year mortality following COPD

hospitalizations. Am J Respir Crit Care Med. 2019;199:1205–13.

Prevaes SM, de Winter-de Groot KM, Janssens HM, de Steenhuijsen Piters

WA, Tramper-Stranders GA, Wyllie AL, et al. Development of the

nasopharyngeal microbiota in infants with cystic fibrosis. Am J Respir Crit

Care Med. 2016;193:504–15.

Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR,

Standiford TJ, et al. Enrichment of the lung microbiome with gut

bacteria in sepsis and the acute respiratory distress syndrome. Nat

Microbiol. 2016;1:16113.

Panzer AR, Lynch SV, Langelier C, Christie JD, McCauley K, Nelson M, et al.

Lung microbiota is related to smoking status and to development of acute

respiratory distress syndrome in critically ill trauma patients. Am J Respir Crit

Care Med. 2018;197:621–31.

Segal LN, Alekseyenko AV, Clemente JC, Kulkarni R, Wu B, Gao Z, et al.

Enrichment of lung microbiome with supraglottic taxa is associated with

increased pulmonary inflammation. Microbiome. 2013;1:19.

Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG, et al.

Enrichment of the lung microbiome with oral taxa is associated with lung

inflammation of a Th17 phenotype. Nat Microbiol. 2016;1:16031.

Bernasconi E, Pattaroni C, Koutsokera A, Pison C, Kessler R, Benden C,

et al. Airway microbiota determines innate cell inflammatory or tissue

remodeling profiles in lung transplantation. Am J Respir Crit Care Med.

2016;194:1252–63.

Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell

E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA.

2012;307:2526–33.

Akiyama K, Nishioka K, Khan KN, Tanaka Y, Mori T, Nakaya T, et al. Molecular

detection of microbial colonization in cervical mucus of women with and

without endometriosis. Am J Reprod Immunol. 2019;82:e13147.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello

EK, et al. QIIME allows analysis of high-throughput community sequencing

data. Nat Methods. 2010;7:335–6.

Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for

FASTA/Q file manipulation. PLoS One. 2016;11:e0163962.

Goleva E, Jackson LP, Harris JK, Robertson CE, Sutherland ER, Hall CF, et al.

The effects of airway microbiome on corticosteroid responsiveness in

asthma. Am J Respir Crit Care Med. 2013;188:1193–201.

Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young

VB, et al. Analysis of the upper respiratory tract microbiotas as the source of

the lung and gastric microbiotas in healthy individuals. MBio. 2015;6:e00037.

Nseir S, Zerimech F, Jaillette E, Artru F, Balduyck M. Microaspiration in

intubated critically ill patients: diagnosis and prevention. Infect Disord Drug

Targets. 2011;11:413–23.

Poroyko V, Meng F, Meliton A, Afonyushkin T, Ulanov A, Semenyuk E, et al.

Alterations of lung microbiota in a mouse model of LPS-induced lung

injury. Am J Physiol Lung Cell Mol Physiol. 2015;309:L76–83.

Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and

lung inflammation: a two-way street. Mucosal Immunol. 2017;10:299–306.

Bingula R, Filaire M, Radosevic-Robin N, Bey M, Berthon JY, BernalierDonadille A, et al. Desired turbulence? Gut-lung Axis, immunity, and lung

cancer. J Oncol. 2017;2017:5035371.

Page 9 of 9

26. Stanley D, Moore RJ, Wong CHY. An insight into intestinal mucosal

microbiota disruption after stroke. Sci Rep. 2018;8:568.

27. Kelly BJ, Imai I, Bittinger K, Laughlin A, Fuchs BD, Bushman FD, et al.

Composition and dynamics of the respiratory tract microbiome in intubated

patients. Microbiome. 2016;4:7.

28. O'Dwyer DN, Dickson RP, Moore BB. The lung microbiome, immunity, and

the pathogenesis of chronic lung disease. J Immunol. 2016;196:4839–47.

29. Mouraux S, Bernasconi E, Pattaroni C, Koutsokera A, Aubert JD, Claustre J,

et al. Airway microbiota signals anabolic and catabolic remodeling in the

transplanted lung. J Allergy Clin Immunol. 2018;141:718–29 e717.

30. Knippenberg S, Ueberberg B, Maus R, Bohling J, Ding N, Tort Tarres M, et al.

Streptococcus pneumoniae triggers progression of pulmonary fibrosis

through pneumolysin. Thorax. 2015;70:636–46.

31. Stock CJ, Sato H, Fonseca C, Banya WA, Molyneaux PL, Adamali H, et al.

Mucin 5B promoter polymorphism is associated with idiopathic pulmonary

fibrosis but not with development of lung fibrosis in systemic sclerosis or

sarcoidosis. Thorax. 2013;68:436–41.

32. Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. Asthma-associated

differences in microbial composition of induced sputum. J Allergy Clin

Immunol. 2013;131:346–52 e341–3.

33. Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et al. The infant

nasopharyngeal microbiome impacts severity of lower respiratory infection

and risk of asthma development. Cell Host Microbe. 2015;17:704–15.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る