リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「First-principles calculation of elastic properties of Cu-Zn intermetallic compounds for improving the stiffness of aluminum alloys」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

First-principles calculation of elastic properties of Cu-Zn intermetallic compounds for improving the stiffness of aluminum alloys

Iwaoka Hideaki 90751496 Hirosawa Shoichi 20345359 横浜国立大学

2020.03

概要

In this study, we computed the elastic properties of Cu-Zn binary intermetallic compounds, CuZn, Cu5Zn8 and CuZn4, by first-principles calculation and discussed the capability of the improvement in stiffness of aluminum alloys by aging treatment. The disordered CuZn4 with random atom distribution was emulated for the first time by virtual crystal approximation (VCA) model and special quasirandom structure (SQS) model with symmetry-based projection (SBP) technique. From the present calculation results, it was found that Young’s modulus of polycrystalline aggregate of CuZn4 is almost comparable to the highest counterpart of Cu5Zn8 with lower elastic anisotropy, but the expected volume fraction of CuZn4 is much higher than that of Cu5Zn8 after aging treatment. According to the rule of mixtures for the aluminum matrix and differently oriented intermetallic compounds, therefore, CuZn4 was rationally recommended as the most suitable intermetallic compound for improving the stiffness of Al-Cu-Zn alloys.

参考文献

[1]

A.

Wilm,

Physikalisch-metallurgische

Untersuchungen

über

magnesiumhaltige

Aluminiumlegierungen, Metallurgie. 8 (1911) 225–227.

[2] E.A. Brandes, G.B. Brook, Smithells Metals Reference Book, Butterworth -Heinemann, 1992.

[3] J.R. Davis, Aluminum and Aluminum Alloys, ASM International, 1993.

[4] K. Tanaka, H. Abe, K. Hirano, Young’s Modulus of Age-Hardend Aluminium Alloys, Nat. Sci.

Report, Ochanomizu Univ. 5 (1955) 213–227.

[5] B.J. Elliot, H.J. Axon, The Young’s Modulus of Some Quenched and Aged Binary Aluminum

Alloys, J. Inst. Met. 86 (1957) 24–28.

[6] C. Chiou, H. Herman, M.E. Fine, Further Studies of GPI Zone Formation in Al-2 At. Pct Cu,

Trans. Metall. Soc. AIME. 218 (1960) 299–307.

[7] M. Senoo, T. Hayashi, Elastic Constants of Al-Cu Solid-Solution Alloys and Their Variations by

Aging Treatments, JSME Int. J. Ser. I 31 (1988) 664–670.

[8] A. Villuendas, J. Jorba, A. Roca, The Role of Precipitates in the Behavior of Young’s Modulus

in Aluminum Alloys, Metall. Mater. Trans. A. 45 (2014) 3857–3865.

[9] B. Noble, S.J. Harris, K. Dinsdale, The elastic modulus of aluminium-lithium alloys, J. Mater.

Sci. 17 (1982) 461–468.

[10] E. Becker, W. Heyroth, Behaviour of Young’s modulus of AlZnMg alloys during homogeneous

decomposition, Phys. Status Solidi. (a) 100 (1987) 485–492.

[11] L. Bellaiche, D. Vanderbilt, Virtual crystal approximation revisited: Application to dielectric

and piezoelectric properties of perovskites, Phys. Rev. B. 61 (2000) 7877–7882.

[12] A. Zunger, S. Wei, L.G. Ferreira, J.E. Bernard, Special quasirandom structures, Phys. Rev. Lett.

65 (1990) 353–356.

[13] W. Zhou, R. Sahara, K. Tsuchiya, First-principles study of the phase stability and elastic

properties of Ti-X alloys (X = Mo, Nb, Al, Sn, Zr, Fe, Co, and O), J. Alloys Compd. 727 (2017)

579–595.

[14] C. Marker, S.L. Shang, J.C. Zhao, Z.K. Liu, Effects of alloying elements on the elastic

properties of bcc Ti-X alloys from first-principles calculations, Comput. Mater. Sci. 142 (2018)

215–226.

[15] A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Mechanical properties and stacking fault

energies of NiFeCrCoMn high-entropy alloy, JOM. 65 (2013) 1780–1789.

[16] F. Tian, Y. Wang, L. Vitos, Impact of aluminum doping on the thermo-physical properties of

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

refractory medium-entropy alloys, J. Appl. Phys. 121 (2017) 015105.

[17] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne,

First-principles simulation : ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter. 14

(2002) 2717–2744.

[18] M.E. Straumanis, L.S. Yu, Lattice parameters, densities, expansion coefficients and perfection

of structure of Cu and of Cu–In α phase, Acta Crystallogr. A25 (1969) 676–682.

[19] S.S. Rao, T.R. Anantharaman, Constitution of brasses below 500℃, Z. Metallkd. 60 (1969)

312–315.

[20] J.K. Brandon, R.Y. Brizard, P.C. Chieh, R.K. McMillan, W.B. Pearson, New Refinements of

the γ brass Type Structures Cu5Zn8, Cu5Cd8 and Fe3Zn10, Acta Crystallogr. B30 (1974) 1412–1417.

[21] T.B. Massalski, H.W. King, The lattice spacing relationships in H.C.P. ε and η phases in the

systems Cu-Zn, Ag-Zn, Au-Zn and Ag-Cd, Acta Metall. 10 (1962) 1171–1181.

[22] J.R. Brown, The Solid Solution of Cadmium in Zinc, J. Inst. Met. 83 (1954) 49–52.

[23] A. Van De Walle, P. Tiwary, M. De Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang,

L.Q. Chen, Z.K. Liu, Efficient stochastic generation of special quasirandom structures, Calphad

Comput. Coupling Phase Diagrams Thermochem. 42 (2013) 13–18.

[24] A. van de Walle, G. Ceder, Automating first-principles phase diagram calculations, J. Phase

Equilibria. 23 (2002) 348–359.

[25] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys.

Rev. Lett. 77 (1996) 3865–3868.

[26] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,

Phys. Rev. B. 41 (1990) 7892–7895.

[27] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13

(1976) 5188–5192.

[28] B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, Relaxation of Crystals with the

Quasi-Newton Method, J. Comput. Phys. 131 (1997) 233–240.

[29] L. Cheng, Z. Shuai, Z. Yu, Z. Da-Wei, H. Chao-Zheng, L. Zhi-Wen, Insights into structural and

thermodynamic properties of the intermetallic compound in ternary Mg-Zn-Cu alloy under high

pressure and high temperature, J. Alloys Compd. 597 (2014) 119–123.

[30] W. Zhou, L. Liu, B. Li, Q. Song, P. Wu, Structural, Elastic, and Electronic Properties of Al-Cu

Intermetallics from First-Principles Calculations, J. Electron. Mater. 38 (2009) 356–364.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

[31] G. Ghosh, First-principles calculations of structural energetics of Cu–TM (TM = Ti , Zr , Hf)

intermetallics, Acta Mater. 55 (2007) 3347–3374.

[32] C. Bercegeay, S. Bernard, First-principles equations of state and elastic properties of seven

metals, Phys. Rev. B72 (2005) 214101.

[33] W.C. Overton, J. Gaffney, Temperature Variation of the Elastic Constants of Cubic Elements. I.

Copper, Phys. Rev. 98 (1955) 969–977.

[34] Y.A. Chang, L. Himmel, Temperature Dependence of the Elastic Constants of Cu, Ag, and Au

above Room Temperature, J. Appl. Phys. 37 (1966) 3567–3572.

[35] R.E. Schmunk, C.S. Smith, Elastic constants of copper-nickel alloys, Acta Metall. 8 (1960)

396–401.

[36] O. Alsalmi, M. Sanati, R.C. Albers, T. Lookman, A. Saxena, First-principles study of phase

stability of bcc XZn (X = Cu, Ag, and Au) alloys, Phys. Rev. Mater. 2 (2018) 113601.

[37] R. Sun, D.D. Johnson, Stability maps to predict anomalous ductility in B2 materials, Phys. Rev.

B. 87 (2013) 104107.

[38] X.F. Wang, T.E. Jones, W. Li, Y.C. Zhou, Extreme Poisson’s ratios and their electronic origin

in B2 CsCl-type AB intermetallic compounds, Phys. Rev. B. 85 (2012) 134108.

[39] G.M. McManus, Elastic Properties of β-CuZn, Phys. Rev. 129 (1963) 2004–2007.

[40] Y. Murakami, S. Kachi, Lattice Softening and Phase Stability of CuZn, AgZn and AuZn β

Phase Alloys, Jpn. J. Appl. Phys. 13 (1974) 1728–1732.

[41] P.L. Young, A. Bienenstock, Elastic Constants of β-Brass from Room Temperature to Above

520℃, J. Appl. Phys. 42 (1971) 3008–3009.

[42] L. Yang, W. Jiong, G. Qian-nan, D. Yong, Structural, elastic and electronic properties of Cu-X

compounds from first-principles calculations, J. Cent. South Univ. 22 (2015) 1585–1594.

[43] W. Zhou, L. Liu, P. Wu, Structural, electronic and thermo-elastic properties of Cu6Sn5 and

Cu5Zn8 intermetallic compounds: First-principles investigation, Intermetallics. 18 (2010) 922–928.

[44] W.C. Hu, Y. Liu, D.J. Li, H.L. Jin, Y.X. Xu, C.S. Xu, X.Q. Zeng, Structural, anisotropic elastic

and electronic properties of Sr-Zn binary system intermetallic compounds: A first-principles study,

Comput. Mater. Sci. 99 (2015) 381–389.

[45] G.A. Alers, J.R. Neighbours, The elastic constants of zinc between 4.2° and 670°K, J. Phys.

Chem. Solids. 7 (1958) 58–64.

[46] C.W. Garland, R. Dalven, Elastic Constants of Zinc from 4.2°K to 77.6°K, Phys. Rev. 111

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

(1958) 1232–1234.

[47] C.A. Wert, E.P.T. Tyndall, Elasticity of Zinc Crystals, J. Appl. Phys. 20 (1949) 587–589.

[48] P.W. Bridgman, Some Properties of Single Metal Crystals, Proc. Natl. Acad. Sci. U.S.A. 10

(1924) 411–415.

[49] J.T. Browaeys, S. Chevrot, Decomposition of the elastic tensor and geophysical applications,

Geophys. J. Int. 159 (2004) 667–678.

[50] M. Moakher, A.N. Norris, The closest elastic tensor of arbitrary symmetry to an elasticity tensor

of lower symmetry, J. Elast. 85 (2006) 215–263.

[51] F. Tasnádi, M. Odén, I.A. Abrikosov, Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys:

Dependence of elastic constants on size and shape of the supercell model and their convergence,

Phys. Rev. B 85 (2012) 144112.

[52] R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A65 (1952)

349–354.

[53] B. Wen, J. Zhao, F. Bai, T. Li, First-principle studies of Al-Ru intermetallic compounds,

Intermetallics. 16 (2008) 333–339.

[54] J. Du, B. Wen, R. Melnik, Y. Kawazoe, Phase stability , elastic and electronic properties of

Cu–Zr binary system intermetallic compounds: A first-principles study, J. Alloys Compd. 588

(2014) 96–102.

[55] J. Du, B. Wen, R. Melnik, Y. Kawazoe, First-principles studies on structural, mechanical,

thermodynamic and electronic properties of Ni-Zr intermetallic compounds, Intermetallics. 54

(2014) 110–119.

[56] S.I. Ranganathan, M. Ostoja-Starzewski, Universal Elastic Anisotropy Index, Phys. Rev. Lett.

101 (2008) 055504.

[57] S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline

pure metals, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45 (1954) 823–843.

[58] J.J. Lewandowski, W.H. Wang, A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses,

Philos. Mag. Lett. 85 (2005) 77–87.

[59] H. Titrian, U. Aydin, M. Friák, D. Ma, D. Raabe, J. Neugebauer, Self-consistent Scale-bridging

Approach to Compute the Elasticity of Multi-phase Polycrystalline Materials, Mater. Res. Soc.

Symp. Proc. 1524 (2013) mrsf12-1524-rr06-03.

[60] M. Friák, W.A. Counts, D. Ma, B. Sander, D. Holec, D. Raabe, J. Neugebauer, Theory-Guided

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Materials Design of Multi-Phase Ti-Nb Alloys with Bone-Matching Elastic Properties, Materials 5

(2012) 1853–1872.

[61] L.F. Zhu, M. Friák, L. Lymperakis, H. Titrian, U. Aydin, A.M. Janus, H.O. Fabritius, A. Ziegler,

S. Nikolov, P. Hemzalová, D. Raabe, J. Neugebauer, Ab initio study of single-crystalline and

polycrystalline elastic properties of Mg-substituted calcite crystals, J. Mech. Behav. Biomed. Mater.

20 (2013) 296–304.

[62] L.A. Shuvalov, Modern Crystallography IV (Physical Properties of Crystals), Springer, 1988.

[63] W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper,

Ann. Phys. 274 (1889) 573–587.

[64] A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung

für Einkristalle, Z. Angew. Math. Und Mech. 9 (1929) 49–58.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Captions

Table 1 Young’s modulus of polycrystalline aggregate of Al, Cu, Zn and Fe at room temperature,

Epoly and maximum solubility limit of Cu, Zn and Fe in Al, S.

Table 2 Lattice constants a, b, c, α, β, γ and mass density ρ of Cu, CuZn, Cu5Zn8, CuZn4 and Zn.

The present calculation results are compared with experimentally reported values.

Table 3 Elastic constants Cij of single crystal of Cu, CuZn, Cu5Zn8, CuZn4 and Zn. The present

calculation results are compared with experimentally reported and previously computed values.

Table 4 Elastic compliances Sij of single crystal of Cu, CuZn, Cu5Zn8, CuZn4 and Zn. The present

calculation results are compared with experimentally reported and previously computed values.

Table 5 Bulk modulus Bpoly, shear modulus Gpoly and Young’s modulus Epoly of polycrystalline

aggregate of Cu, CuZn, Cu5Zn8, CuZn4 and Zn. The present calculation results in Voigt, Reuss and

Hill models are compared with experimentally reported and previously computed values.

Table 6 Poisson’s ratio ν, bulk modulus to shear modulus ratio BH/GH and universal elastic

anisotropy index AU of Cu, CuZn, Cu5Zn8, CuZn4 and Zn. The present calculation results are

compared with experimentally reported and previously computed values.

Fig.1 Elemental atom distribution of (a) CuZn, (b) Cu5Zn8 and CuZn4 in (c) VCA model or (d) SQS

(3×3×3 supercell) model before geometry optimization.

Fig.2 Mole fraction dependence of (a) bulk modulus BH, (b) shear modulus GH and (c) Young’s

modulus EH of polycrystalline aggregate for Cu, CuZn, Cu5Zn8, CuZn4 and Zn. The present

calculation results in Hill model are compared with experimentally reported and previously

computed values.

Fig.3 Mass density dependence of bulk modulus BH of polycrystalline aggregate for Cu, CuZn,

Cu5Zn8, CuZn4 and Zn. The present calculation results in Hill model are compared with

experimentally reported and previously computed values.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Fig.4 Directional anisotropy of Young’s modulus E of single crystal for Cu, CuZn, Cu5Zn8,

CuZn4 and Zn. The magnitude of E in each direction is illustrated not only by color-coding

according to each color scale but also by the distance from the center of the three-dimensional

space.

Table

Table 1 Young’s modulus of polycrystalline aggregate of Al, Cu, Zn and Fe

at room temperature, Epoly and maximum solubility limit of Cu, Zn and Fe in

Al, S.

Epoly (GPa) [2]

S (at%) [3]

Al

70.6

Cu

129.8

2.48

Zn

104.5

66.4

Fe

211.4

0.025

Table 2 Lattice constants a, b, c, α, β, γ and mass density ρ of Cu, CuZn, Cu5Zn8, CuZn4 and Zn.

The present calculation results are compared with experimentally reported values.

Phase

Space group

a (Å)

b (Å)

c (Å)

α (deg.)

β (deg.)

γ (deg.)

ρ (g/cm3)

Cu

Fm-3m (225)

Present

3.630

8.824

Exp.

3.615

8.935

CuZn

Pm-3m (221)

Present

2.959

8.264

Exp.

2.958

8.270

Cu5Zn8

I-43m (217)

Present

8.858

8.035

Exp.

8.878

7.981

Present(VCA)

2.747

4.291

7.702

Present(SQS)

2.744

2.748

4.291

90.00

90.01

120.99

7.782

Exp.

2.738

4.294

7.744

Present

2.640

4.977

7.231

Exp.

2.665

4.947

7.138

CuZn4

P63 /mmc (194)

Zn

P63 /mmc (194)

[18]

[19]

[20]

[21]

[22]

Table 3 Elastic constants Cij of single crystal of Cu, CuZn, Cu5Zn8, CuZn4 and Zn. The present calculation

results are compared with experimentally reported and previously computed values.

Elastic constant of single crystal (GPa)

Cu

CuZn

Cu5Zn8

CuZn4

Zn

C11

C12

C13

C22

C23

C33

C44

C55

C66

Present

170.8

121.5

75.3

Cal.

176.0

118.2

81.9

[29]

Cal.

183.5

125.9

80.9

[30]

Cal.

171.2

123.1

72.4

[31]

Cal.

171.1

122.2

75.3

[32]

Exp. at 4.2 K

176.2

124.9

81.8

[33]

Exp. at RT

170.0

122.5

75.8

[34]

Exp. at RT

168.1

121.5

75.1

[35]

Present

134.8

104.7

75.4

Cal.

126.3

110.5

89.3

[36]

Cal.

130.2

112.5

83.1

[29]

Cal.

124.0

108.7

78.6

[37]

Cal.

123.4

110.9

84.3

[38]

Exp. at 4.2 K

139.6

109.2

82.3

[39]

Exp. at RT

131.1

101.5

73.8

[40]

Exp. at RT

127.1

107.1

80.3

[41]

Present

204.3

59.7

44.4

Cal.

195.6

61.5

41.7

[42]

Cal.

185.3

72.9

60.5

[43]

Present(VCA)

149.4

52.4

57.9

Present(SQS)

157.9

49.8

63.8

Present

(SQS+SBP)

145.1

57.7

Present

175.5

Cal.

182.2

58.7

170.3

76.0

63.7

170.3

69.9

43.2

51.2

58.7

36.1

170.7

29.8

40.4

61.3

44.6

[44]

Cal.

171.0

37.3

51.9

63.7

41.3

[29]

Exp. at 4.2 K

179.1

37.5

55.4

68.8

46.0

[45]

Exp. at 4.2 K

177.0

34.8

52.8

68.5

45.9

[46]

Exp. at RT

160.9

33.5

50.1

61.0

38.3

[47]

Exp. at RT

159.0

32.3

48.2

62.1

40.0

[48]

148.0

63.7

63.8

35.9

Table 4 Elastic compliances Sij of single crystal of Cu, CuZn, Cu5Zn8, CuZn4 and Zn. The present

calculation results are compared with experimentally reported and previously computed values.

Elastic compliance of single crystal (TPa-1)

Cu

CuZn

Cu5Zn8

CuZn4

Zn

S11

S12

S13

S22

S23

S33

S44

S55

S66

Present

14.35

-5.97

13.29

Cal.

12.33

-4.95

12.20

[29]

Cal.

12.34

-5.02

12.36

[30]

Cal.

14.65

-6.13

13.82

[31]

Cal.

14.44

-6.01

13.28

[32]

Exp. at 4.2 K

13.78

-5.72

12.22

[33]

Exp. at RT

14.84

-6.21

13.19

[34]

Exp. at RT

15.12

-6.34

13.31

[35]

Present

23.18

-10.14

13.26

Cal.

43.15

-20.14

11.20

[36]

Cal.

38.75

-17.97

12.04

[29]

Cal.

44.55

-20.81

12.72

[37]

Cal.

54.30

-25.70

11.86

[38]

Exp. at 4.2 K

22.86

-10.03

12.15

[39]

Exp. at RT

23.52

-10.26

13.55

[40]

Exp. at RT

34.31

-15.69

12.45

[41]

Present

5.64

-1.28

22.51

Cal.

6.02

-1.44

23.98

[42]

Cal.

6.94

-1.96

16.53

[43]

Present(VCA)

8.19

-2.12

-1.93

Present(SQS)

8.19

-2.33

-2.15

Present

(SQS+SBP)

8.94

-2.49

Present

7.64

Cal.

6.72

17.04

7.74

13.52

-2.41

7.68

14.31

0.08

-6.74

28.80

27.74

6.95

-0.15

-4.48

22.22

22.41

[44]

Cal.

7.79

0.31

-6.60

26.47

24.21

[29]

Exp. at 4.2 K

7.46

0.39

-6.32

24.72

21.76

[45]

Exp. at 4.2 K

7.35

0.32

-5.92

23.72

21.79

[46]

Exp. at RT

8.38

0.54

-7.33

28.43

26.11

[47]

Exp. at RT

8.24

0.35

-6.66

26.45

25.00

[48]

9.61

-2.80

16.10

32.59

Table 5 Bulk modulus Bpoly, shear modulus Gpoly and Young’s modulus Epoly of polycrystalline aggregate

of Cu, CuZn, Cu5Zn8, CuZn4 and Zn. The present calculation results in Voigt, Reuss and Hill models are

compared with experimentally reported and previously computed values.

Bpoly (GPa)

Cu

CuZn

Cu5Zn8

CuZn4

Zn

Gpoly (GPa)

Epoly (GPa)

BV

BR

BH

GV

GR

GH

EV

ER

EH

Present

137.9

137.9

137.9

55.0

41.3

48.1

145.7

112.6

129.4

Cal.

137.4

137.4

137.4

60.7

47.3

54.0

158.8

127.3

143.3

[29]

Cal.

145.1

145.1

145.1

60.1

46.9

53.5

158.3

127.1

142.9

[30]

Cal.

139.1

139.1

139.1

53.0

40.1

46.6

141.2

109.9

125.7

[31]

Cal.

138.5

138.5

138.5

55.0

41.1

48.0

145.6

112.2

129.2

[32]

Exp. at 4.2 K

142.0

142.0

142.0

59.3

43.6

51.5

156.3

118.7

137.8

[33]

Exp. at RT

138.3

138.3

138.3

55.0

40.4

47.7

145.6

110.4

128.3

[34]

Exp. at RT

137.0

137.0

137.0

54.4

39.8

47.1

144.1

108.7

126.7

[35]

Present

114.7

114.7

114.7

51.3

28.9

40.1

133.8

80.0

107.7

Cal.

115.8

115.8

115.8

56.7

17.4

37.1

146.3

49.8

100.5

[36]

Cal.

118.4

118.4

118.4

53.4

19.0

36.2

139.2

54.1

98.5

[29]

Cal.

113.8

113.8

113.8

50.2

16.7

33.5

131.3

47.7

91.4

[37]

Cal.

115.1

115.1

115.1

53.1

14.1

33.6

138.0

40.5

91.8

[38]

Exp. at 4.2 K

119.3

119.3

119.3

55.5

29.8

42.6

144.1

82.4

114.2

[39]

Exp. at RT

111.4

111.4

111.4

50.2

28.4

39.3

130.9

78.6

105.5

[40]

Exp. at RT

113.8

113.8

113.8

52.2

21.1

36.6

135.8

59.5

99.2

[41]

Present

107.9

107.9

107.9

55.6

52.5

54.0

142.3

135.6

138.9

Cal.

106.2

106.2

106.2

51.8

49.1

50.5

133.8

127.7

130.7

[42]

Cal.

110.4

110.4

110.4

58.8

58.7

58.7

149.8

149.6

149.7

[43]

Present(VCA)

90.8

89.8

90.3

54.0

53.5

53.8

135.2

133.9

134.6

Present

(SQS+SBP)

92.3

91.6

91.9

55.1

52.4

53.8

137.8

132.1

135.0

Present

77.9

57.8

67.8

45.2

34.0

39.6

113.7

85.2

99.4

Cal.

69.3

55.9

62.6

51.4

41.9

46.7

123.6

100.6

112.1

[44]

Cal.

76.4

61.5

69.0

47.5

36.6

42.1

118.1

91.6

104.9

[29]

Exp. at 4.2 K

80.4

66.1

73.2

51.1

39.4

45.3

126.5

98.7

112.6

[45]

Exp. at 4.2 K

78.1

64.9

71.5

51.4

40.2

45.8

126.4

100.1

113.2

[46]

Exp. at RT

72.2

59.0

65.6

44.7

34.0

39.3

111.1

85.6

98.4

[47]

Exp. at RT

70.8

59.0

64.9

45.4

35.6

40.5

112.3

89.0

100.6

[48]

Table 6 Poisson’s ratio ν, bulk modulus to shear modulus ratio BH/GH and universal

elastic anisotropy index AU of Cu, CuZn, Cu5Zn8, CuZn4 and Zn. The present calculation

results are compared with experimentally reported and previously computed values.

Cu

CuZn

Cu5Zn8

CuZn4

Zn

BH/GH

AU

Present

0.34

2.87

1.66

Cal.

0.33

2.54

1.42

[29]

Cal.

0.34

2.71

1.40

[30]

Cal.

0.35

2.99

1.61

[31]

Cal.

0.34

2.88

1.69

[32]

Exp. at 4.2 K

0.34

2.76

1.80

[33]

Exp. at RT

0.35

2.90

1.81

[34]

Exp. at RT

0.35

2.91

1.84

[35]

Present

0.34

2.86

3.87

Cal.

0.36

3.26

11.27

[36]

Cal.

0.36

3.27

9.03

[29]

Cal.

0.37

3.40

10.05

[37]

Cal.

0.37

3.43

13.87

[38]

Exp. at 4.2 K

0.34

2.80

4.32

[39]

Exp. at RT

0.34

2.83

3.82

[40]

Exp. at RT

0.35

3.11

7.39

[41]

Present

0.29

2.00

0.29

Cal.

0.29

2.10

0.28

[42]

Cal.

0.27

1.88

0.01

[43]

Present (VCA)

0.25

1.68

0.06

Present

(SQS+SBP)

0.26

1.71

0.26

Present

0.26

1.71

2.01

Cal.

0.20

1.34

1.37

[44]

Cal.

0.25

1.64

1.74

[29]

Exp. at 4.2 K

0.24

1.62

1.70

[45]

Exp. at 4.2 K

0.24

1.56

1.59

[46]

Exp. at RT

0.25

1.67

1.79

[47]

Exp. at RT

0.24

1.60

1.58

[48]

Figure

Cu

(a)

(b)

(c)

(d)

Zn

Cu0.2Zn0.8

Fig.1 Elemental atom distribution of (a) CuZn, (b) Cu5Zn8 and CuZn4 in (c)

VCA model or (d) SQS (3×3×3 supercell) model before geometry

optimization.

Present

160

Exp.(RT)

(a)

Cu

140

B /GPa

Exp.(4.2 K)

Cal.

CuZn

Cu5Zn8

120

CuZn4

100

Zn

80

60

70

(b)

G /GPa

60

50

40

Cu5Zn8

Cu

CuZn4

Zn

30

CuZn

20

160

(c)

E /GPa

140

120

Cu5Zn8

Cu

CuZn4

100

80

Zn

CuZn

60

0.0

0.2

0.4

0.6

0.8

1.0

Mole fraction of Zn

Fig.2 Mole fraction dependence of (a) bulk modulus BH, (b) shear modulus GH and (c)

Young’s modulus EH of polycrystalline aggregate for Cu, CuZn, Cu5Zn8, CuZn4 and Zn.

The present calculation results in Hill model are compared with experimentally reported

and previously computed values.

Present

Cal.

Exp.(4.2 K)

Exp.(RT)

160

B /GPa

140

Cu

120

CuZn

100

Cu5Zn8

80

CuZn4

60

Zn

40

7.0

7.5

8.0

8.5

9.0

Mass density, ρ /g/cm

Fig.3 Mass density dependence of bulk modulus BH of polycrystalline aggregate for Cu,

CuZn, Cu5Zn8, CuZn4 and Zn. The present calculation results in Hill model are

compared with experimentally reported and previously computed values.

(a) Cu, AU = 1.66

(b) CuZn, AU = 3.87

(GPa)

(GPa)

180

180

160

165

150

140

135

120

120

100

105

80

90

60

75

(e) CuZn4 (VCA), AU = 0.06

(c) Cu5Zn8, AU = 0.29

(GPa)

(GPa)

176

147

168

144

160

141

138

152

135

144

(e) CuZn4 (SQS+SBP), AU = 0.26

132

136

129

128

126

120

123

(GPa)

(f) Zn, AU = 2.01

150

(GPa)

130

145

120

110

140

100

135

90

130

125

120

115

Fig.4 Directional anisotropy of Young’s modulus E of single crystal for Cu, CuZn, Cu5Zn8,

CuZn4 and Zn. The magnitude of E in each direction is illustrated not only by color-coding

according to each color scale but also by the distance from the center of the three-dimensional

space.

80

70

60

50

40

*Author Contributions Section

Author Contributions Section

Conceptualization, H.I. and S.H.; Methodology, H.I. and S.H.; Investigation, H.I.; Writing – Original

Draft, H.I.; Writing –Review & Editing, S.H.; Funding Acquisition, S.H.; Resources, S.H.;

Supervision, S.H.

*CRediT Author Statement

Credit Author Statement

Conceptualization, H.I. and S.H.; Methodology, H.I. and S.H.; Investigation, H.I.; Writing – Original

Draft, H.I.; Writing –Review & Editing, S.H.; Funding Acquisition, S.H.; Resources, S.H.;

Supervision, S.H.

*Declaration of Interest Statement

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered

as potential competing interests:

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る