リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges

Taha, Eman A. Lee, Joseph Hotta, Akitsu 京都大学 DOI:10.1016/j.jconrel.2022.01.013

2022.02

概要

The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technology opened the door to provide a versatile approach for treating multiple diseases. Promising results have been shown in numerous pre-clinical studies and clinical trials. However, a safe and effective method to deliver genome-editing components is still a key challenge for in vivo genome editing therapy. Adeno-associated virus (AAV) is one of the most commonly used vector systems to date, but immunogenicity against capsid, liver toxicity at high dose, and potential genotoxicity caused by off-target mutagenesis and genomic integration remain unsolved. Recently developed transient delivery systems, such as virus-like particle (VLP) and lipid nanoparticle (LNP), may solve some of the issues. This review summarizes existing in vivo delivery systems and possible solutions to overcome their limitations. Also, we highlight the ongoing clinical trials for in vivo genome editing therapy and recently developed genome editing tools for their potential applications.

参考文献

[1] M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna, E. Charpentier, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science 337 (6096) (Aug. 2012) 816–821, https://doi.org/10.1126/ science.1225829.

[2] M. Behr, J. Zhou, B. Xu, H. Zhang, In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges, Acta Pharm. Sin. B 11 (8) (Aug. 2021) 2150–2171, https://doi.org/10.1016/j.apsb.2021.05.020.

[3] B.H. Yip, Recent advance in CRISPR/Cas9 delivery strategies, Biomolecules 10 (6) (May 2020) 839, https://doi.org/10.3390/biom10060839.

[4] X. Xu, et al., Delivery of CRISPR/Cas9 for therapeutic genome editing, J. Gene Med. 21 (7) (2019), e3107, https://doi.org/10.1002/jgm.3107.

[5] K. Ishida, P. Gee, A. Hotta, Minimizing off-target mutagenesis risks caused by programmable nucleases, Int. J. Mol. Sci. 16 (10) (Oct. 2015) 24751–24771, https://doi.org/10.3390/ijms161024751.

[6] X. Liang, et al., Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection, J. Biotechnol. 208 (Aug. 2015) 44–53, https://doi.org/ 10.1016/j.jbiotec.2015.04.024.

[7] B. Li, et al., Engineering CRISPR-Cpf1 crRNAs and mRNAs to maximize genome editing efficiency, Nat. Biomed. Eng. 1 (5) (May 2017), https://doi.org/10.1038/ s41551-017-0066.

[8] A. Kagita, et al., Efficient ssODN-mediated targeting by avoiding cellular inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA ribonucleoprotein, Stem Cell Rep. 16 (4) (Apr. 2021) 985–996, https://doi.org/10.1016/j. stemcr.2021.02.013.

[9] I.S. Ludwig, et al., Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation, J. Virol. 78 (15) (Aug. 2004) 8322–8332, https://doi.org/ 10.1128/JVI.78.15.8322-8332.2004.

[10] J. Gao, K. Mese, O. Bunz, A. Ehrhardt, State-of-the-art human adenovirus vectorology for therapeutic approaches, FEBS Lett. 593 (24) (2019) 3609–3622, https://doi.org/10.1002/1873-3468.13691.

[11] R.J. Samulski, N. Muzyczka, AAV-mediated gene therapy for research and therapeutic purposes, Annu. Rev. Virol. 1 (1) (Nov. 2014) 427–451, https://doi. org/10.1146/annurev-virology-031413-085355.

[12] T.R. Flotte, Gene therapy Progress and prospects: recombinant adeno-associated virus (rAAV) vectors, Gene Ther. 11 (10) (May 2004) 805–810, https://doi.org/ 10.1038/sj.gt.3302233.

[13] V.W. Choi, D.M. McCarty, R. Jude Samulski, AAV hybrid serotypes: improved vectors for gene delivery, Curr. Gene Ther. 5 (3) (Jun. 2005) 299–310.

[14] Z. Wu, A. Asokan, R.J. Samulski, Adeno-associated virus serotypes: vector toolkit for human gene therapy, Mol. Ther. J. Am. Soc. Gene Ther. 14 (3) (Sep. 2006), https://doi.org/10.1016/j.ymthe.2006.05.009. Art. no. 3.

[15] G. Buchlis, et al., Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer, Blood 119 (13) (Mar. 2012) 3038–3041, https://doi.org/10.1182/blood-2011-09-382317.

[16] D.Y. Richards, et al., AAV-mediated CRISPR/Cas9 gene editing in murine phenylketonuria, Mol. Ther. Methods Clin. Dev. 17 (Jun. 2020) 234–245, https:// doi.org/10.1016/j.omtm.2019.12.004.

[17] L. Wang, et al., A mutation-independent CRISPR-Cas9-mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency, Sci. Adv. 6 (7) (Feb. 2020) eaax5701, https://doi.org/10.1126/sciadv.aax5701.

[18] W. Duan, et al., The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model, Gene Ther. 27 (3–4) (Apr. 2020) 157–169, https://doi.org/10.1038/s41434-019-0116-1.

[19] H. Zhao, et al., In vivo AAV-CRISPR/Cas9-mediated gene editing ameliorates atherosclerosis in familial hypercholesterolemia, Circulation 141 (1) (Jan. 2020) 67–79, https://doi.org/10.1161/CIRCULATIONAHA.119.042476.

[20] J. Gao, T. Bergmann, W. Zhang, M. Schiwon, E. Ehrke-Schulz, A. Ehrhardt, Viral vector-based delivery of CRISPR/Cas9 and donor DNA for homology-directed repair in an in vitro model for canine hemophilia B, Mol. Ther. Nucleic Acids 14 (Mar. 2019) 364–376, https://doi.org/10.1016/j.omtn.2018.12.008.

[21] A.M. Monteys, S.A. Ebanks, M.S. Keiser, B.L. Davidson, CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo, Mol. Ther. J. Am. Soc. Gene Ther. 25 (1) (Jan. 2017) 12–23, https://doi.org/10.1016/j.ymthe.2016.11.010.

[22] K.M. Nishiguchi, K. Fujita, F. Miya, S. Katayama, T. Nakazawa, Single AAV- mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice, Nat. Commun. 11 (1) (Jan. 2020) 482, https://doi.org/10.1038/s41467-019-14181-3.

[23] T. Koo, et al., CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration, Nat. Commun. 9 (1) (May 2018) 1855, https://doi.org/10.1038/s41467-018-04175-y.

[24] W. Yu, et al., Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice, Nat. Commun. 8 (1) (Mar. 2017) 14716, https://doi.org/ 10.1038/ncomms14716.

[25] X. Huang, et al., Genome editing abrogates angiogenesis in vivo, Nat. Commun. 8 (1) (Jul. 2017) 112, https://doi.org/10.1038/s41467-017-00140-3.

[26] G.-X. Ruan, E. Barry, D. Yu, M. Lukason, S.H. Cheng, A. Scaria, CRISPR/Cas9- mediated genome editing as a therapeutic approach for Leber congenital Amaurosis 10, Mol. Ther. J. Am. Soc. Gene Ther. 25 (2) (Feb. 2017) 331–341, https://doi.org/10.1016/j.ymthe.2016.12.006.

[27] M.L. Maeder, et al., Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10, Nat. Med. 25 (2) (Feb. 2019) 229–233, https://doi.org/10.1038/s41591-018-0327-9.

[28] N.E. Bengtsson, et al., Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy, Nat. Commun. 8 (1) (Feb. 2017) 14454, https://doi.org/10.1038/ ncomms14454.

[29] Y.-L. Min, et al., Correction of three prominent mutations in mouse and human models of Duchenne muscular dystrophy by single-cut genome editing, Mol. Ther. 28 (9) (Sep. 2020) 2044–2055, https://doi.org/10.1016/j.ymthe.2020.05.024.

[30] Y.-L. Min, et al., CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells, Sci. Adv. 5 (3) (Mar. 2019) eaav4324, https://doi.org/10.1126/sciadv.aav4324.

[31] Y. Zhang, et al., Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system, Sci. Adv. 6 (8) (Feb. 2020) eaay6812, https://doi.org/10.1126/sciadv.aay6812.

[32] L. Amoasii, et al., In vivo non-invasive monitoring of dystrophin correction in a new Duchenne muscular dystrophy reporter mouse, Nat. Commun. 10 (Oct. 2019) 4537, https://doi.org/10.1038/s41467-019-12335-x.

[33] M. Tabebordbar, et al., Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species, Cell 184 (19) (Sep. 2021) 4919–4938.e22, https://doi.org/10.1016/j.cell.2021.08.028.

[34] A. Philippidis, Editas Early Data for CRISPR Therapy EDIT-101 Shows Efficacy ‘Signals’ in Two Patients, GEN - Genetic Engineering and Biotechnology News, Sep. 29, 2021. https://www.genengnews.com/news/editas-early-data-for-crispr-therapy-edit-101-shows-efficacy-signals-in-two-patients/ (accessed Oct. 27, 2021).

[35] First CRISPR therapy dosed, Nat. Biotechnol., vol. 38, no. 4, pp. 382–382, Apr. 2020, doi: https://doi.org/10.1038/s41587-020-0493-4.

[36] L. Ou, et al., A highly efficacious PS gene editing system corrects metabolic and neurological complications of mucopolysaccharidosis type I, Mol. Ther. J. Am. Soc. Gene Ther. 28 (6) (Jun. 2020) 1442–1454, https://doi.org/10.1016/j. ymthe.2020.03.018.

[37] A.C. Nathwani, Gene therapy for hemophilia, Hematol. Am. Soc. Hematol. Educ. Program 2019 (1) (Dec. 2019) 1–8, https://doi.org/10.1182/ hematology.2019000007.

[38] W. Ding, et al., Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18- positive cervical cancer cells, Clin. Cancer Res. (Oct. 2014), https://doi.org/ 10.1158/1078-0432.CCR-14-0250.

[39] Z. Hu, et al., TALEN-mediated targeting of HPV oncogenes ameliorates HPV- related cervical malignancy, J. Clin. Invest. 125 (1) (Jan. 2015) 425–436, https:// doi.org/10.1172/JCI78206.

[40] Z. Hu, et al., Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical Cancer cells, Biomed. Res. Int. Jul. 2014 (2014), e612823, https://doi.org/10.1155/2014/612823.

[41] A. Mullard, Gene-editing pipeline takes off, Nat. Rev. Drug Discov. 19 (6) (May 2020) 367–372, https://doi.org/10.1038/d41573-020-00096-y.

[42] D. Yin, et al., Targeting herpes simplex virus with CRISPR-Cas9 cures herpetic stromal keratitis in mice, Nat. Biotechnol. 39 (5) (May 2021) 567–577, https:// doi.org/10.1038/s41587-020-00781-8.

[43] J.D. Gillmore, et al., CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis, N. Engl. J. Med. 385 (6) (Aug. 2021), https://doi.org/10.1056/ NEJMoa2107454. Art. no. 6.

[44] C.S. Manno, et al., Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response, Nat. Med. 12 (3) (Mar. 2006) 342–347, https://doi.org/10.1038/nm1358.

[45] S. Boutin, et al., Prevalence of serum IgG and neutralizing factors against adeno- associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors, Hum. Gene Ther. 21 (6) (Jun. 2010) 704–712, https://doi.org/10.1089/hum.2009.182.

[46] A. Li, et al., AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9, Mol. Ther. 28 (6) (Jun. 2020) 1432–1441, https://doi.org/10.1016/j. ymthe.2020.04.017.

[47] K. Erles, P. Sebo¨kova`, J.R. Schlehofer, Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV), J. Med. Virol. 59 (3) (Nov. 1999) 406–411, https://doi.org/10.1002/(sici)1096-9071(199911)59: 3<406::aid-jmv22>3.0.co;2-n.

[48] F. Mingozzi, K.A. High, Immune responses to AAV vectors: overcoming barriers to successful gene therapy, Blood 122 (1) (Jul. 2013) 23–36, https://doi.org/ 10.1182/blood-2013-01-306647.

[49] M.A. Bartel, J.R. Weinstein, D.V. Schaffer, Directed evolution of novel adeno- associated viruses for therapeutic gene delivery, Gene Ther. 19 (6) (Jun. 2012) 694–700, https://doi.org/10.1038/gt.2012.20.

[50] I. Ates, T. Rathbone, C. Stuart, P.H. Bridges, R.N. Cottle, Delivery approaches for therapeutic genome editing and challenges, Genes 11 (10) (Sep. 2020) 1113, https://doi.org/10.3390/genes11101113.

[51] V. Monteilhet, et al., A 10 patient case report on the impact of plasmapheresis upon neutralizing factors against adeno-associated virus (AAV) types 1, 2, 6, and 8, Mol. Ther. J. Am. Soc. Gene Ther. 19 (11) (Nov. 2011) 2084–2091, https://doi. org/10.1038/mt.2011.108.

[52] C. Hinderer, et al., Severe toxicity in nonhuman Primates and piglets following High-dose intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN, Hum. Gene Ther. 29 (3) (Mar. 2018) 285–298, https:// doi.org/10.1089/hum.2018.015.

[53] Audentes press release. https://www.joshuafrase.org/get-involved/recensus-stud y.php, 2020 (accessed Oct. 01, 2021).

[54] Audentes press release, Astellas Gene Therapies Therapeutics. https://www.astell as.com/system/files/news/2021-09/20210901_en.pdf, 2021 (accessed Oct. 01,2021).

[55] C.E. Nelson, et al., Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy, Nat. Med. 25 (3) (Mar. 2019) 427–432, https:// doi.org/10.1038/s41591-019-0344-3.

[56] K.S. Hanlon, et al., High levels of AAV vector integration into CRISPR-induced DNA breaks, Nat. Commun. 10 (1) (Sep. 2019) 4439, https://doi.org/10.1038/ s41467-019-12449-2.

[57] A. Li, et al., A self-deleting AAV-CRISPR system for in vivo genome editing, Mol. Ther. Methods Clin. Dev. 12 (Mar. 2019) 111–122, https://doi.org/10.1016/j. omtm.2018.11.009.

[58] Z. Wu, H. Yang, P. Colosi, Effect of genome size on AAV vector packaging, Mol. Ther. J. Am. Soc. Gene Ther. 18 (1) (Jan. 2010) 80–86, https://doi.org/10.1038/ mt.2009.255.

[59] D.-J.J. Truong, et al., Development of an intein-mediated split–Cas9 system for gene therapy, Nucleic Acids Res. 43 (13) (Jul. 2015) 6450–6458, https://doi.org/ 10.1093/nar/gkv601.

[60] B. Zetche, S.E. Volz, F. Zhang, A Split Cas9 architecture for inducible genome editing and transcription modulation, Nat. Biotechnol. 33 (2) (Feb. 2015) 139–142, https://doi.org/10.1038/nbt.3149.

[61] F.A. Ran, et al., In vivo genome editing using Staphylococcus aureus Cas9, Nature 520 (7546) (Apr. 2015) 186–191, https://doi.org/10.1038/nature14299.

[62] E. Kim, et al., In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni, Nat. Commun. 8 (1) (Feb. 2017), https://doi.org/10.1038/ ncomms14500. Art. no. 1.

[63] J. Strecker, et al., Engineering of CRISPR-Cas12b for human genome editing, Nat. Commun. 10 (1) (Jan. 2019) 212, https://doi.org/10.1038/s41467-018-08224-4.

[64] R.G. Crystal, Adenovirus: the first effective in vivo gene delivery vector, Hum. Gene Ther. 25 (1) (Jan. 2014) 3–11, https://doi.org/10.1089/hum.2013.2527.

[65] M.S. Jones, et al., New adenovirus species found in a patient presenting with gastroenteritis, J. Virol. 81 (11) (Jun. 2007) 5978–5984, https://doi.org/ 10.1128/JVI.02650-06.

[66] K. Aoki, et al., Epidemic keratoconjunctivitis due to the novel hexon-chimeric- intermediate 22,37/H8 human adenovirus, J. Clin. Microbiol. 46 (10) (Oct. 2008) 3259–3269, https://doi.org/10.1128/JCM.02354-07.

[67] C.J. Stephens, E.J. Lauron, E. Kashentseva, Z.H. Lu, W.M. Yokoyama, D.T. Curiel, Long-term correction of hemophilia B using adenoviral delivery of CRISPR/Cas9, J. Control. Release Off. J. Control. Release Soc. 298 (Mar. 2019) 128–141, https://doi.org/10.1016/j.jconrel.2019.02.009.

[68] C.S. Lee, et al., Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine, Genes Dis. 4 (2) (Apr. 2017) 43–63, https://doi.org/10.1016/j.gendis.2017.04.001.

[69] L.E. Ailles, L. Naldini, HIV-1-derived lentiviral vectors, Curr. Top. Microbiol. Immunol. 261 (2002) 31–52, https://doi.org/10.1007/978-3-642-56114-6_2.

[70] E.M. Poeschla, Non-primate lentiviral vectors, Curr. Opin. Mol. Ther. 5 (5) (Oct. 2003) 529–540.

[71] S. Kubo, K. Mitani, A new hybrid system capable of efficient lentiviral vector production and stable gene transfer mediated by a single helper-dependent adenoviral vector, J. Virol. 77 (5) (Mar. 2003) 2964–2971, https://doi.org/ 10.1128/JVI.77.5.2964-2971.2003.

[72] E. Abordo-Adesida, et al., Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses, Hum. Gene Ther. 16 (6) (Jun. 2005) 741–751, https://doi.org/10.1089/ hum.2005.16.741.

[73] S. Hacein-Bey-Abina, et al., LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1, Science 302 (5644) (Oct. 2003) 415–419, https://doi.org/10.1126/science.1088547.

[74] E. Haapaniemi, S. Botla, J. Persson, B. Schmierer, J. Taipale, CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response, Nat. Med. 24 (7) (Jul. 2018) 927–930, https://doi.org/10.1038/s41591-018-0049-z.

[75] Y. Fu, et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells, Nat. Biotechnol. 31 (9) (Sep. 2013) 822–826, https:// doi.org/10.1038/nbt.2623.

[76] P.I. Ortinski, B. O’Donovan, X. Dong, B. Kantor, Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing, Mol. Ther. Methods Clin. Dev. 5 (Jun. 2017) 153–164, https://doi.org/ 10.1016/j.omtm.2017.04.002.

[77] N. Uchida, et al., Cas9 protein delivery non-integrating lentiviral vectors for gene correction in sickle cell disease, Mol. Ther. - Methods Clin. Dev. 21 (Jun. 2021) 121–132, https://doi.org/10.1016/j.omtm.2021.02.022.

[78] H.I. Segall, E. Yoo, R.E. Sutton, Characterization and detection of artificial replication-competent lentivirus of altered host range, Mol. Ther. 8 (1) (Jul. 2003) 118–129, https://doi.org/10.1016/S1525-0016(03)00134-5.

[79] S. Nooraei, et al., Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers, J. Nanobiotechnology 19 (1) (Feb. 2021) 59, https://doi.org/10.1186/s12951-021-00806-7.

[80] Y.H. Chung, H. Cai, N.F. Steinmetz, Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications, Adv. Drug Deliv. Rev. 156 (2020) 214–235, https://doi.org/10.1016/j.addr.2020.06.024.

[81] B. Donaldson, Z. Lateef, G.F. Walker, S.L. Young, V.K. Ward, Virus-like particle vaccines: immunology and formulation for clinical translation, Expert Rev. Vaccines 17 (9) (Sep. 2018) 833–849, https://doi.org/10.1080/14760584.2018.1516552.

[82] J.G. Choi, et al., Lentivirus pre-packed with Cas9 protein for safer gene editing, Gene Ther. 23 (7) (Jul. 2016) 627–633, https://doi.org/10.1038/gt.2016.27.

[83] C. Montagna, et al., VSV-G-enveloped vesicles for traceless delivery of CRISPR- Cas9, Mol. Ther. Nucleic Acids 12 (Jul. 2018) 453–462, https://doi.org/10.1016/ j.omtn.2018.05.010.

[84] P.E. Mangeot, et al., Genome editing in primary cells and in vivo using viral- derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins, Nat. Commun. 10 (1) (Jan. 2019) 45, https://doi.org/10.1038/s41467-018-07845-z.

[85] L.A. Campbell, L.M. Coke, C.T. Richie, L.V. Fortuno, A.Y. Park, B.K. Harvey, Gesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex for inactivating the HIV provirus, Mol. Ther. J. Am. Soc. Gene Ther. 27 (1) (Jan. 2019) 151–163, https://doi.org/10.1016/j.ymthe.2018.10.002.

[86] P. Gee, et al., Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping, Nat. Commun. 11 (1) (Mar. 2020) 1334, https://doi.org/10.1038/s41467-020-14957-y.

[87] F. Heitz, M.C. Morris, G. Divita, Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics, Br. J. Pharmacol. 157 (2) (May 2009) 195–206, https://doi.org/10.1111/j.1476-5381.2009.00057.x.

[88] G. Guidotti, L. Brambilla, D. Rossi, Cell-penetrating peptides: from basic research to clinics, Trends Pharmacol. Sci. 38 (4) (Apr. 2017) 406–424, https://doi.org/ 10.1016/j.tips.2017.01.003.

[89] O. Gustafsson, et al., Efficient Peptide-Mediated In Vitro Delivery of Cas9 RNP, Pharmaceutics 13 (6) (Jun. 2021), https://doi.org/10.3390/ pharmaceutics13060878. Art. no. 6.

[90] Y.J. Kim, H. Lee, H. Cha, J.H. Park, Non-viral gene disruption by CRISPR/Cas9 delivery using cell-permeable and protein-stabilizing 30Kc19 protein, Biotechnol. Bioprocess Eng. 25 (5) (Sep. 2020) 724–733, https://doi.org/10.1007/s12257-020-0068-8.

[91] B.T. Staahl, et al., Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes, Nat. Biotechnol. 35 (5) (May 2017) 431–434, https://doi.org/10.1038/nbt.3806.

[92] I. Maggio, et al., Integrating gene delivery and gene-editing technologies by adenoviral vector transfer of optimized CRISPR-Cas9 components, Gene Ther. 27 (5) (May 2020) 209–225, https://doi.org/10.1038/s41434-019-0119-y.

[93] J. Habault, J.-L. Poyet, Recent advances in cell penetrating peptide-based anticancer therapies, Molecules 24 (5) (Mar. 2019) 927, https://doi.org/ 10.3390/molecules24050927.

[94] K. Lee, et al., Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair, Nat. Biomed. Eng. 1 (2017) 889–901, https://doi.org/10.1038/s41551-017-0137-2.

[95] S. Abbasi, et al., Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain, J. Control. Release 332 (Apr. 2021) 260–268, https://doi.org/10.1016/j.jconrel.2021.02.026.

[96] E.E. Walsh, et al., Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates, N. Engl. J. Med. 383 (25) (Dec. 2020) 2439–2450, https://doi.org/ 10.1056/NEJMoa2027906.

[97] M.J. Mulligan, et al., Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults, Nature 586 (7830) (Oct. 2020) 589–593, https://doi.org/10.1038/ s41586-020-2639-4.

[98] D. Chatzikleanthous, D.T. O’Hagan, R. Adamo, Lipid-based nanoparticles for delivery of vaccine adjuvants and antigens: toward multicomponent vaccines, Mol. Pharm. 18 (8) (Aug. 2021) 2867–2888, https://doi.org/10.1021/acs. molpharmaceut.1c00447.

[99] P.R. Cullis, M.J. Hope, Lipid nanoparticle Systems for Enabling Gene Therapies, Mol. Ther. J. Am. Soc. Gene Ther. 25 (7) (Jul. 2017) 1467–1475, https://doi.org/ 10.1016/j.ymthe.2017.03.013.

[100] M. Qiu, et al., Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single- guide RNA achieves liver-specific in vivo genome editing of Angptl3, Proc. Natl. Acad. Sci. 118 (10) (Mar. 2021), https://doi.org/10.1073/pnas.2020401118.

[101] J.D. Finn, et al., A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing, Cell Rep. 22 (9) (Feb. 2018) 2227–2235, https://doi.org/10.1016/j.celrep.2018.02.014.

[102] T. Wei, Q. Cheng, Y.-L. Min, E.N. Olson, D.J. Siegwart, Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing, Nat. Commun. 11 (1) (Jun. 2020) 3232, https://doi.org/10.1038/ s41467-020-17029-3.

[103] Y. Suzuki, et al., Lipid nanoparticles loaded with ribonucleoprotein- oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition, J. Control. Release Off. J. Control. Release Soc. 330 (Feb. 2021) 61–71, https://doi.org/10.1016/j. jconrel.2020.12.013.

[104] Q. Cheng, T. Wei, L. Farbiak, L.T. Johnson, S.A. Dilliard, D.J. Siegwart, Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing, Nat. Nanotechnol. 15 (4) (Apr. 2020) 313–320, https:// doi.org/10.1038/s41565-020-0669-6.

[105] T.-C. Ho, et al., Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy, Sci. Adv. 7 (21) (May 2021) eabg3217, https://doi.org/ 10.1126/sciadv.abg3217.

[106] J.D. Gillmore, et al., CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis, N. Engl. J. Med. 385 (6) (Aug. 2021) 493–502, https://doi.org/ 10.1056/NEJMoa2107454.

[107] E. Kenjo, et al., Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice, Nat. Commun. 12 (1) (Dec. 2021) 7101, https://doi.org/10.1038/s41467-021-26714-w.

[108] H. Xu, et al., Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility, Cell Stem Cell 24 (4) (Apr. 2019) 566–578. e7, https://doi.org/10.1016/j.stem.2019.02.005.

[109] E.A. Stadtmauer, et al., CRISPR-engineered T cells in patients with refractory cancer, Science 367 (6481) (Feb. 2020), https://doi.org/10.1126/science. aba7365 eaba7365.

[110] L. Xu, et al., CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia, N. Engl. J. Med. (Sep. 2019), https://doi.org/10.1056/ NEJMoa1817426.

[111] Y. Shinmyo, S. Tanaka, S. Tsunoda, K. Hosomichi, A. Tajima, H. Kawasaki, CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation, Sci. Rep. 6 (1) (Feb. 2016) 20611, https://doi.org/10.1038/ srep20611.

[112] C.A. Lino, J.C. Harper, J.P. Carney, J.A. Timlin, Delivering CRISPR: a review of the challenges and approaches, Drug Deliv. 25 (1) (May 2018) 1234–1257, https://doi.org/10.1080/10717544.2018.1474964.

[113] P. Gu, et al., Genetically blocking HPD via CRISPR-Cas9 protects against lethal liver injury in a pig model of tyrosinemia type I, Mol. Ther. - Methods Clin. Dev. 21 (Jun. 2021) 530–547, https://doi.org/10.1016/j.omtm.2021.04.002.

[114] S.Z. Mirjalili Mohanna, et al., Germline CRISPR/Cas9-mediated gene editing prevents vision loss in a novel mouse model of Aniridia, Mol. Ther. - Methods Clin. Dev 17 (Jun. 2020) 478–490, https://doi.org/10.1016/j. omtm.2020.03.002.

[115] I. Lentacker, I. De Cock, R. Deckers, S.C. De Smedt, C.T.W. Moonen, Understanding ultrasound induced sonoporation: definitions and underlying mechanisms, Adv. Drug Deliv. Rev. 72 (Jun. 2014) 49–64, https://doi.org/ 10.1016/j.addr.2013.11.008.

[116] J.-Y. Ryu, et al., Ultrasound-activated particles as CRISPR/Cas9 delivery system for androgenic alopecia therapy, Biomaterials 232 (Feb. 2020), 119736, https:// doi.org/10.1016/j.biomaterials.2019.119736.

[117] J. Cai, S. Huang, Y. Yi, S. Bao, Ultrasound microbubble-mediated CRISPR/Cas9 knockout of C-erbB-2 in HEC-1A cells, J. Int. Med. Res. 47 (5) (May 2019) 2199–2206, https://doi.org/10.1177/0300060519840890.

[118] E. Bianconi, et al., An estimation of the number of cells in the human body, Ann. Hum. Biol. 40 (6) (Dec. 2013) 463–471, https://doi.org/10.3109/03014460.2013.807878.

[119] C.T. Charlesworth, et al., Identification of preexisting adaptive immunity to Cas9 proteins in humans, Nat. Med. 25 (2) (Feb. 2019) 249–254, https://doi.org/ 10.1038/s41591-018-0326-x.

[120] D.L. Wagner, et al., High prevalence of streptococcus pyogenes Cas9-reactive T cells within the adult human population, Nat. Med. 25 (2) (Feb. 2019) 242–248, https://doi.org/10.1038/s41591-018-0204-6.

[121] W.L. Chew, et al., A multi-functional AAV-CRISPR-Cas9 and its host response, Nat. Methods 13 (10) (Oct. 2016) 868–874, https://doi.org/10.1038/ nmeth.3993.

[122] S.R. Ferdosi, et al., Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes, Nat. Commun. 10 (1) (Apr. 2019) 1842, https://doi.org/10.1038/s41467-019-09693-x.

[123] D. Wilbie, J. Walther, E. Mastrobattista, Delivery aspects of CRISPR/Cas for in vivo genome editing, Acc. Chem. Res. 52 (6) (Jun. 2019) 1555–1564, https://doi. org/10.1021/acs.accounts.9b00106.

[124] S. Perrin, Preclinical research: make mouse studies work, Nature 507 (7493) (Mar. 2014) 423–425, https://doi.org/10.1038/507423a.

[125] L. Koch, A primate view of gene expression, Nat. Rev. Genet. 21 (3) (Mar. 2020) 135, https://doi.org/10.1038/s41576-020-0217-0.

[126] M. Shrivastav, L.P. De Haro, J.A. Nickoloff, Regulation of DNA double-strand break repair pathway choice, Cell Res. 18 (1) (Jan. 2008), https://doi.org/ 10.1038/cr.2007.111. Art. no. 1.

[127] P. Katsonis, et al., Single nucleotide variations: Biological impact and theoretical interpretation, Protein Sci. Publ. Protein Soc 23 (12) (Dec. 2014), https://doi.org/ 10.1002/pro.2552. Art. no. 12.

[128] I.I. Suvorova, N.V. Katolikova, V.A. Pospelov, Chapter four - new insights into cell cycle regulation and dna damage response in embryonic stem cells, in: K.W. Jeon (Ed.), International Review of Cell and Molecular Biology vol. 299, Academic Press, 2012, pp. 161–198, https://doi.org/10.1016/B978-0-12-394310-1.00004-7.

[129] Z. Mao, M. Bozzella, A. Seluanov, V. Gorbunova, DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells, Cell Cycle Georget. Tex 7 (18) (Sep. 2008), https://doi.org/10.4161/cc.7.18.6679. Art. no. 18.

[130] W.-D. Heyer, K.T. Ehmsen, J. Liu, Regulation of homologous recombination in eukaryotes, Annu. Rev. Genet. 44 (2010) 113–139, https://doi.org/10.1146/ annurev-genet-051710-150955.

[131] T. Maruyama, S.K. Dougan, M. Truttmann, A.M. Bilate, J.R. Ingram, H.L. Ploegh, Inhibition of non-homologous end joining increases the efficiency of CRISPR/ Cas9-mediated precise [TM: inserted] genome editing, Nat. Biotechnol. 33 (5) (May 2015), https://doi.org/10.1038/nbt.3190. Art. no. 5.

[132] D. Yang, M.A. Scavuzzo, J. Chmielowiec, R. Sharp, A. Bajic, M. Borowiak, Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases, Sci. Rep. 6 (1) (Feb. 2016) 21264, https://doi.org/10.1038/srep21264.

[133] L. Farbiak, et al., All-in-one dendrimer-based lipid nanoparticles enable precise HDR-mediated gene editing in vivo, Adv. Mater. Deerfield Beach Fla 33 (30) (Jul. 2021), https://doi.org/10.1002/adma.202006619. Art. no. 30.

[134] M. Charpentier, et al., CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair, Nat. Commun. 9 (1) (Mar. 2018) 1133, https://doi. org/10.1038/s41467-018-03475-7.

[135] I.F. Khan, R.K. Hirata, D.W. Russell, AAV-mediated gene targeting methods for human cells, Nat. Protoc. 6 (4) (Apr. 2011), https://doi.org/10.1038/ nprot.2011.301. Art. no. 4.

[136] F. Chen, et al., High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases, Nat. Methods 8 (9) (Sep. 2011) 753–755, https://doi.org/ 10.1038/nmeth.1653.

[137] N.K. Paulk, et al., Bioengineered AAV Capsids with Combined High Human Liver Transduction In Vivo and Unique Humoral Seroreactivity, Mol. Ther. 26 (1) (Jan. 2018), https://doi.org/10.1016/j.ymthe.2017.09.021. Art. no. 1.

[138] K. Suzuki, et al., In vivo genome editing via CRISPR/Cas9 mediated homology- independent targeted integration, Nature 1–18 (Dec. 2016) 144–149, https://doi. org/10.1038/nature20565.

[139] S.Q. Tsai, J.K. Joung, Defining and improving the genome-wide specificities of CRISPR–Cas9 nucleases, Nat. Rev. Genet. 17 (5) (May 2016) 300–312, https:// doi.org/10.1038/nrg.2016.28.

[140] A.C. Komor, Y.B. Kim, M.S. Packer, J.A. Zuris, D.R. Liu, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature 533 (7603) (May 2016), https://doi.org/10.1038/nature17946. Art. no. 7603.

[141] N.M. Gaudelli, et al., Programmable base editing of a•T to G•C in genomic DNA without DNA cleavage, Nature 551 (7681) (Nov. 2017) 464–471, https://doi.org/ 10.1038/nature24644.

[142] M. Rosello, et al., Precise base editing for the in vivo study of developmental signaling and human pathologies in zebrafish, eLife 10 (Feb. 2021), e65552, https://doi.org/10.7554/eLife.65552.

[143] L. Xu, et al., Efficient precise in vivo base editing in adult dystrophic mice, Nat. Commun. 12 (1) (Jun. 2021) 3719, https://doi.org/10.1038/s41467-021-23996- y.

[144] L. Villiger, et al., In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA, Nat. Biomed. Eng. 5 (2) (Feb. 2021) 179–189, https://doi.org/10.1038/s41551-020-00671-z.

[145] Y.K. Jeong, et al., Adenine base editor engineering reduces editing of bystander cytosines, Nat. Biotechnol. (Jul. 2021) 1–8, https://doi.org/10.1038/s41587- 021-00943-2.

[146] J. Tan, F. Zhang, D. Karcher, R. Bock, Engineering of high-precision base editors for site-specific single nucleotide replacement, Nat. Commun. 10 (1) (Jan. 2019) 439, https://doi.org/10.1038/s41467-018-08034-8.

[147] Y. Liu, et al., A Cas-embedding strategy for minimizing off-target effects of DNA base editors, Nat. Commun. 11 (1) (Nov. 2020) 6073, https://doi.org/10.1038/ s41467-020-19690-0.

[148] E. Zuo, et al., A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects, Nat. Methods 17 (6) (Jun. 2020), https://doi.org/10.1038/s41592-020-0832-x. Art. no. 6.

[149] D. Kim, D. Kim, G. Lee, S.-I. Cho, J.-S. Kim, Genome-wide target specificity of CRISPR RNA-guided adenine base editors, Nat. Biotechnol. 37 (4) (Apr. 2019) 430–435, https://doi.org/10.1038/s41587-019-0050-1.

[150] D. Kim, B.-C. Kang, J.-S. Kim, Identifying genome-wide off-target sites of CRISPR RNA–guided nucleases and deaminases with Digenome-seq, Nat. Protoc. 16 (2) (Feb. 2021) 1170–1192, https://doi.org/10.1038/s41596-020-00453-6.

[151] P. Liang, et al., Genome-wide profiling of adenine base editor specificity by EndoV-seq, Nat. Commun. 10 (1) (Jan. 2019) 67, https://doi.org/10.1038/ s41467-018-07988-z.

[152] Z. Lei, et al., Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors, Nat. Methods 18 (6) (Jun. 2021) 643–651, https://doi.org/10.1038/s41592-021-01172-w.

[153] E. Zuo, et al., Cytosine base editor generates substantial off-target single- nucleotide variants in mouse embryos, Science 364 (6437) (Apr. 2019), https:// doi.org/10.1126/science.aav9973. Art. no. 6437.

[154] Y. Yu, et al., Cytosine base editors with minimized unguided DNA and RNA off- target events and high on-target activity, Nat. Commun. 11 (1) (Apr. 2020) 2052, https://doi.org/10.1038/s41467-020-15887-5.

[155] S. Jin, et al., Cytosine, but not adenine, base editors induce genome-wide off- target mutations in rice, Science 364 (6437) (Apr. 2019), https://doi.org/ 10.1126/science.aaw7166. Art. no. 6437.

[156] T. Rothgangl, In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels, Nat. Biotechnol. (2021), https://doi.org/10.1038/s41587-021- 00933-4.

参考文献をもっと見る