リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「MPP6 stimulates both RRP6 and DIS3 to degrade a specified subset of MTR4-sensitive substrates in the human nucleus」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

MPP6 stimulates both RRP6 and DIS3 to degrade a specified subset of MTR4-sensitive substrates in the human nucleus

Fujiwara, Naoko Shigemoto, Maki Hirayama, Mizuki Fujita, Ken-ichi Seno, Shigeto Matsuda, Hideo Nagahama, Masami Masuda, Seiji 京都大学 DOI:10.1093/nar/gkac559

2022.08.26

概要

Recent in vitro reconstitution analyses have proven that the physical interaction between the exosome core and MTR4 helicase, which promotes the exosome activity, is maintained by either MPP6 or RRP6. However, knowledge regarding the function of MPP6 with respect to in vivo exosome activity remains scarce. Here, we demonstrate a facilitative function of MPP6 that composes a specific part of MTR4-dependent substrate decay by the human exosome. Using RNA polymerase II-transcribed poly(A)⁺ substrate accumulation as an indicator of a perturbed exosome, we found functional redundancy between RRP6 and MPP6 in the decay of these poly(A)⁺ transcripts. MTR4 binding to the exosome core via MPP6 was essential for MPP6 to exert its redundancy with RRP6. However, at least for the decay of our identified exosome substrates, MTR4 recruitment by MPP6 was not functionally equivalent to recruitment by RRP6. Genome-wide classification of substrates based on their sensitivity to each exosome component revealed that MPP6 deals with a specific range of substrates and highlights the importance of MTR4 for their decay. Considering recent findings of competitive binding to the exosome between auxiliary complexes, our results suggest that the MPP6-incorporated MTR4-exosome complex is one of the multiple alternative complexes rather than the prevailing one.

この論文で使われている画像

参考文献

1. Birney,E., Stamatoyannopoulos,J.A., Dutta,A., Guigo´,R., Gingeras,T.R., Margulies,E.H., Weng,Z., Snyder,M., Dermitzakis,E.T., Thurman,R.E. et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447, 799–816.

2. Djebali,S., Davis,C.A., Merkel,A., Dobin,A., Lassmann,T., Mortazavi,A., Tanzer,A., Lagarde,J., Lin,W., Schlesinger,F. et al. (2012) Landscape of transcription in human cells. Nature, 489, 101–108.

3. Nair,L., Chung,H. and Basu,U. (2020) Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nat. Rev. Mol. Cell Biol., 21, 123–136.

4. Ogami,K., Chen,Y. and Manley,J.L. (2018) RNA surveillance by the nuclear RNA exosome: mechanisms and significance. Non-coding RNA, 4, 8.

5. Łabno,A., Tomecki,R. and Dziembowski,A. (2016) Cytoplasmic RNA decay pathways - enzymes and mechanisms. Biochim. Biophys. Acta - Mol. Cell Res., 1863, 3125–3147.

6. Kilchert,C., Wittmann,S. and Vasiljeva,L. (2016) The regulation and functions of the nuclear RNA exosome complex. Nat. Rev. Mol. Cell Biol., 17, 227–239.

7. Doma,M.K. and Parker,R. (2007) RNA quality control in eukaryotes. Cell, 131, 660–668.

8. Zinder,J.C. and Lima,C.D. (2017) Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev., 31, 88–100.

9. Lorentzen,E., Walter,P., Fribourg,S., Evguenieva-Hackenberg,E., Klug,G. and Conti,E. (2005) The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat. Struct. Mol. Biol., 12, 575–581.

10. Dziembowski,A., Lorentzen,E., Conti,E. and Se´raphin,B. (2007) A single subunit, dis3, is essentially responsible for yeast exosome core activity. Nat. Struct. Mol. Biol., 14, 15–22.

11. Liu,Q., Greimann,J.C. and Lima,C.D. (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell, 127, 1223–1237.

12. Lorentzen,E., Basquin,J. and Conti,E. (2008) Structural organization of the RNA-degrading exosome. Curr. Opin. Struct. Biol., 18, 709–713.

13. Wang,H.-W., Wang,J., Ding,F., Callahan,K., Bratkowski,M.A., Butler,J.S., Nogales,E. and Ke,A. (2007) Architecture of the yeast rrp44 exosome complex suggests routes of RNA recruitment for 3’ end processing. Proc. Natl. Acad. Sci. U.S.A., 104, 16844–16849.

14. Lebreton,A., Tomecki,R., Dziembowski,A. and Se´raphin,B. (2008) Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature, 456, 993–996.

15. Schaeffer,D., Tsanova,B., Barbas,A., Reis,F.P., Dastidar,E.G., Sanchez-Rotunno,M., Arraiano,C.M. and van Hoof,A. (2009) The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat. Struct. Mol. Biol., 16, 56–62.

16. Schneider,C., Leung,E., Brown,J. and Tollervey,D. (2009) The N-terminal PIN domain of the exosome subunit rrp44 harborsendonuclease activity and tethers rrp44 to the yeast core exosome.Nucleic Acids Res., 37, 1127–1140.

17. Bonneau,F., Basquin,J., Ebert,J., Lorentzen,E. and Conti,E. (2009) The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell, 139, 547–559.

18. Schaeffer,D., Reis,F.P., Johnson,S.J., Arraiano,C.M. and van Hoof,A. (2012) The CR3 motif of rrp44p is important for interaction with the core exosome and exosome function. Nucleic Acids Res., 40, 9298–9307.

19. Tomecki,R., Kristiansen,M.S., Lykke-Andersen,S., Chlebowski,A., Larsen,K.M., Szczesny,R.J., Drazkowska,K., Pastula,A., Andersen,J.S., Stepien,P.P. et al. (2010) The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J., 29, 2342–2357.

20. Staals,R.H.J., Bronkhorst,A.W., Schilders,G., Slomovic,S., Schuster,G., Heck,A.J.R., Raijmakers,R. and Pruijn,G.J.M. (2010) Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J., 29, 2358–2367.

21. Lorentzen,E., Basquin,J., Tomecki,R., Dziembowski,A. and Conti,E. (2008) Structure of the active subunit of the yeast exosome core, rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Mol. Cell, 29, 717–728.

22. Chang,H.-M., Triboulet,R., Thornton,J.E. and Gregory,R.I. (2013) A role for the perlman syndrome exonuclease dis3l2 in the Lin28–let-7 pathway. Nature, 497, 244–248.

23. Malecki,M., Viegas,S.C., Carneiro,T., Golik,P., Dressaire,C., Ferreira,M.G. and Arraiano,C.M. (2013) The exoribonuclease dis3l2 defines a novel eukaryotic RNA degradation pathway. EMBO J., 32, 1842–1854.

24. Lubas,M., Damgaard,C.K., Tomecki,R., Cysewski,D., Jensen,T.H. and Dziembowski,A. (2013) Exonuclease hDIS3L2 specifies an exosome-independent 3r-5r degradation pathway of human cytoplasmic mRNA. EMBO J., 32, 1855–1868.

25. Briggs,M.W., Burkard,K.T.D. and Butler,J.S. (1998) Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 s rRNA 3r end formation. J. Biol. Chem., 273, 13255–13263.

26. Allmang,C., Petfalski,E., Podtelejnikov,A., Mann,M., Tollervey,D. and Mitchell,P. (1999) The yeast exosome and human PM-Scl are related complexes of 3’ right-arrow 5’ exonucleases. Genes Dev., 13, 2148–2158.

27. Januszyk,K., Liu,Q. and Lima,C.D. (2011) Activities of human RRP6 and structure of the human RRP6 catalytic domain. RNA, 17, 1566–1577.

28. Makino,D.L., Baumga¨rtner,M. and Conti,E. (2013) Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature, 495, 70–75.

29. Wasmuth,E.V, Januszyk,K. and Lima,C.D. (2014) Structure of an Rrp6–RNA exosome complex bound to poly(A) RNA. Nature, 511, 435–439.

30. Makino,D.L., Schuch,B., Stegmann,E., Baumga¨rtner,M., Basquin,C. and Conti,E. (2015) RNA degradation paths in a 12-subunit nuclear exosome complex. Nature, 524, 54–58.

31. Zinder,J.C., Wasmuth,E.V. and Lima,C.D. (2016) Nuclear RNA exosome at 3.1 A˚ reveals substrate specificities, RNA paths, and allosteric inhibition of rrp44/dis3. Mol. Cell, 64, 734–745.

32. Schneider,C., Kudla,G., Wlotzka,W., Tuck,A. and Tollervey,D. (2012) Transcriptome-wide analysis of exosome targets. Mol. Cell, 48, 422–433.

33. Schilders,G. (2005) MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res., 33, 6795–6804.

34. Sloan,K.E., Mattijssen,S., Lebaron,S., Tollervey,D., Pruijn,G.J.M. and Watkins,N.J. (2013) Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing. J. Cell Biol., 200, 577–588.

35. Kobyłecki,K., Dra˛z˙kowska,K., Kulin´ski,T.M., Dziembowski,A. and Tomecki,R. (2018) Elimination of 01/Ar–A0 pre-rRNA processing by-product in human cells involves cooperative action of two nuclear exosome-associated nucleases: RRP6 and DIS3. RNA, 24, 1677–1692.

36. Davidson,L., Francis,L., Cordiner,R.A., Eaton,J.D., Estell,C., Macias,S., Ca´ceres,J.F. and West,S. (2019) Rapid depletion of DIS3, EXOSC10, or XRN2 reveals the immediate impact of exoribonucleolysis on nuclear RNA metabolism and transcriptional control. Cell Rep., 26, 2779–2791.

37. Szczepin´ska,T., Kalisiak,K., Tomecki,R., Labno,A., Borowski,L.S., Kulinski,T.M., Adamska,D., Kosinska,J. and Dziembowski,A. (2015) DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts. Genome Res., 25, 1622–1633.

38. Weick,E.-M. and Lima,C.D. (2021) RNA helicases are hubs that orchestrate exosome-dependent 3’-5’ decay. Curr. Opin. Struct. Biol., 67, 86–94.

39. Kadaba,S., Krueger,A., Trice,T., Krecic,A.M., Hinnebusch,A.G. and Anderson,J. (2004) Nuclear surveillance and degradation of hypomodified initiator tRNAMet in s. cerevisiae. Genes Dev., 18, 1227–1240.

40. LaCava,J., Houseley,J., Saveanu,C., Petfalski,E., Thompson,E., Jacquier,A. and Tollervey,D. (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell, 121, 713–724.

41. Wyers,F., Rougemaille,M., Badis,G., Rousselle,J.-C., Dufour,M.-E., Boulay,J., Re´gnault,B., Devaux,F., Namane,A., Se´raphin,B. et al. (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(a) polymerase. Cell, 121, 725–737.

42. Vanˇa´cˇova´,Sˇ., Wolf,J., Martin,G., Blank,D., Dettwiler,S., Friedlein,A., Langen,H., Keith,G. and Keller,W. (2005) A new yeast poly(a) polymerase complex involved in RNA quality control. PLoS Biol., 3, e189.

43. Delan-Forino,C., Spanos,C., Rappsilber,J. and Tollervey,D. (2020) Substrate specificity of the TRAMP nuclear surveillance complexes. Nat. Commun., 11, 3122.

44. Vasiljeva,L. and Buratowski,S. (2006) Nrd1 interacts with the nuclear exosome for 3r processing of RNA polymerase II transcripts. Mol. Cell, 21, 239–248.

45. Tudek,A., Porrua,O., Kabzinski,T., Lidschreiber,M., Kubicek,K., Fortova,A., Lacroute,F., Vanacova,S., Cramer,P., Stefl,R. et al. (2014) Molecular basis for coordinating transcription termination with noncoding RNA degradation. Mol. Cell, 55, 467–481.

46. Lubas,M., Christensen,M.S., Kristiansen,M.S., Domanski,M., Falkenby,L.G., Lykke-Andersen,S., Andersen,J.S., Dziembowski,A. and Jensen,T.H. (2011) Interaction profiling identifies the human nuclear exosome targeting complex. Mol. Cell, 43, 624–637.

47. Meola,N., Domanski,M., Karadoulama,E., Chen,Y., Gentil,C., Pultz,D., Vitting-Seerup,K., Lykke-Andersen,S., Andersen,J.S., Sandelin,A. et al. (2016) Identification of a nuclear exosome decay pathway for processed transcripts. Mol. Cell, 64, 520–533.

48. Shcherbik,N., Wang,M., Lapik,Y.R., Srivastava,L. and Pestov,D.G. (2010) Polyadenylation and degradation of incomplete RNA polymerase i transcripts in mammalian cells. EMBO Rep., 11, 106–111.

49. Sudo,H., Nozaki,A., Uno,H., Ishida,Y. and Nagahama,M. (2016) Interaction properties of human TRAMP-like proteins and their role in pre-rRNA 5rETS turnover. FEBS Lett., 590, 2963–2972.

50. Tseng,C.-K., Wang,H.-F., Burns,A.M., Schroeder,M.R., Gaspari,M. and Baumann,P. (2015) Human telomerase RNA processing and quality control. Cell Rep., 13, 2232–2243.

51. Nguyen,D., Grenier St-Sauveur,V., Bergeron,D.,Dupuis-Sandoval,F., Scott,M.S. and Bachand,F. (2015) A polyadenylation-dependent 3r end maturation pathway is required for the synthesis of the human telomerase RNA. Cell Rep., 13, 2244–2257.

52. Shukla,S., Schmidt,J.C., Goldfarb,K.C., Cech,T.R. and Parker,R. (2016) Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nat. Struct. Mol. Biol., 23, 286–292.

53. Rammelt,C., Bilen,B., Zavolan,M. and Keller,W. (2011) PAPD5, a noncanonical poly(A) polymerase with an unusual RNA-binding motif. RNA, 17, 1737–1746.

54. Berndt,H., Harnisch,C., Rammelt,C., Stohr,N., Zirkel,A., Dohm,J.C., Himmelbauer,H., Tavanez,J.-P., Huttelmaier,S. and Wahle,E. (2012) Maturation of mammalian H/ACA box snoRNAs: PAPD5-dependent adenylation and PARN-dependent trimming. RNA, 18, 958–972.

55. Schmidt,M. and Norbury,C.J. (2010) Polyadenylation and beyond: emerging roles for noncanonical poly(A) polymerases. Wiley Interdiscip. Rev. RNA, 1, 142–151.

56. Topalian,S.L., Kaneko,S., Gonzales,M.I., Bond,G.L., Ward,Y. and Manley,J.L. (2001) Identification and functional characterization of neo-poly(a) polymerase, an RNA processing enzyme overexpressed in human tumors. Mol. Cell. Biol., 21, 5614–5623.

57. Shi,Y. and Manley,J.L. (2015) The end of the message: multiple protein–RNA interactions define the mRNA polyadenylation site. Genes Dev., 29, 889–897.

58. Lim,J., Kim,D., Lee,Y., Ha,M., Lee,M., Yeo,J., Chang,H., Song,J.,Ahn,K. and Kim,V.N. (2018) Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science, 361, 701–704.

59. Tseng,C.-K., Wang,H.-F., Schroeder,M.R. and Baumann,P. (2018) The H/ACA complex disrupts triplex in hTR precursor to permit processing by RRP6 and PARN. Nat. Commun., 9, 5430.

60. Gable,D.L., Gaysinskaya,V., Atik,C.C., Talbot,C.C., Kang,B.,Stanley,S.E., Pugh,E.W., Amat-Codina,N., Schenk,K.M., Arcasoy,M.O. et al. (2019) ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation. Genes Dev., 33, 1381–1396.

61. Lubas,M., Andersen,P.R., Schein,A., Dziembowski,A., Kudla,G. and Jensen,T.H. (2015) The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. Cell Rep., 10, 178–192.

62. Hrossova,D., Sikorsky,T., Potesil,D., Bartosovic,M., Pasulka,J., Zdrahal,Z., Stefl,R. and Vanacova,S. (2015) RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3r-end extended forms of snRNAs. Nucleic Acids Res., 43, 4236–4248.

63. Falk,S., Finogenova,K., Melko,M., Benda,C., Lykke-Andersen,S., Jensen,T.H. and Conti,E. (2016) Structure of the RBM7–ZCCHC8 core of the NEXT complex reveals connections to splicing factors. Nat. Commun., 7, 13573.

64. Banerjee,A., Apponi,L.H., Pavlath,G.K. and Corbett,A.H. (2013) PABPN1: molecular function and muscle disease. FEBS J., 280, 4230–4250.

65. Beaulieu,Y.B., Kleinman,C.L., Landry-Voyer,A.-M., Majewski,J. and Bachand,F. (2012) Polyadenylation-Dependent control of long noncoding RNA expression by the poly(a)-binding protein nuclear1. PLoS Genet., 8, e1003078.

66. Bresson,S.M. and Conrad,N.K. (2013) The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet., 9, e1003893.

67. Bresson,S.M., Hunter,O.V., Hunter,A.C. and Conrad,N.K. (2015) Canonical poly(a) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs. PLoS Genet., 11, e1005610.

68. Muniz,L., Davidson,L. and West,S. (2015) Poly(A) polymerase and the nuclear poly(a) binding protein, PABPN1, coordinate the splicing and degradation of a subset of human Pre-mRNAs. Mol. Cell. Biol., 35, 2218–2230.

69. Yamanaka,S., Yamashita,A., Harigaya,Y., Iwata,R. and Yamamoto,M. (2010) Importance of polyadenylation in the selective elimination of meiotic mRNAs in growing s. pombe cells. EMBO J., 29, 2173–2181.

70. St-Andre´,O., Lemieux,C., Perreault,A., Lackner,D.H., Ba¨hler,J. and Bachand,F. (2010) Negative regulation of meiotic gene expression by the nuclear Poly(a)-binding protein in fission yeast. J. Biol. Chem., 285, 27859–27868.

71. Chen,H.-M., Futcher,B. and Leatherwood,J. (2011) The fission yeast RNA binding protein mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover. PLoS One, 6, e26804.

72. Zhou,Y., Zhu,J., Schermann,G., Ohle,C., Bendrin,K., Sugioka-Sugiyama,R., Sugiyama,T. and Fischer,T. (2015) The fission yeast MTREC complex targets CUTs and unspliced pre-mRNAs to the nuclear exosome. Nat. Commun., 6, 7050.

73. Kaida,D., Berg,M.G., Younis,I., Kasim,M., Singh,L.N., Wan,L. and Dreyfuss,G. (2010) U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature, 468, 664–668.

74. Chiu,A.C., Suzuki,H.I., Wu,X., Mahat,D.B., Kriz,A.J. and Sharp,P.A. (2018) Transcriptional pause sites delineate stable nucleosome-associated premature polyadenylation suppressed by U1 snRNP. Mol. Cell, 69, 648–663.

75. So,B.R., Di,C., Cai,Z., Venters,C.C., Guo,J., Oh,J.-M., Arai,C. and Dreyfuss,G. (2019) A complex of U1 snRNP with cleavage and polyadenylation factors controls telescripting, regulating mRNA transcription in human cells. Mol. Cell, 76, 590–599.

76. Kamieniarz-Gdula,K., Gdula,M.R., Panser,K., Nojima,T., Monks,J., Wis´niewski,J.R., Riepsaame,J., Brockdorff,N., Pauli,A. and Proudfoot,N.J. (2019) Selective roles of vertebrate PCF11 in premature and full-length transcript termination. Mol. Cell, 74, 158–172.

77. Almada,A.E., Wu,X., Kriz,A.J., Burge,C.B. and Sharp,P.A. (2013) Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature, 499, 360–363.

78. Ntini,E., Ja¨rvelin,A.I., Bornholdt,J., Chen,Y., Boyd,M., Jørgensen,M., Andersson,R., Hoof,I., Schein,A., Andersen,P.R. et al. (2013) Polyadenylation site–induced decay of upstream transcripts enforces promoter directionality. Nat. Struct. Mol. Biol.,20, 923–928.

79. Andersen,P.R., Domanski,M., Kristiansen,M.S., Storvall,H., Ntini,E., Verheggen,C., Schein,A., Bunkenborg,J., Poser,I., Hallais,M. et al. (2013) The human cap-binding complex is functionally connected to the nuclear RNA exosome. Nat. Struct. Mol. Biol., 20, 1367–1376.

80. Lardelli,R.M. and Lykke-Andersen,J. (2020) Competition between maturation and degradation drives human snRNA 3r end quality control. Genes Dev., 34, 989–1001.

81. Kawamoto,T., Yoshimoto,R., Taniguchi,I., Kitabatake,M. and Ohno,M. (2021) ISG20 and nuclear exosome promote destabilization of nascent transcripts for spliceosomal u snRNAs and U1 variants. Genes Cells, 26, 18–30.

82. Ogami,K., Richard,P., Chen,Y., Hoque,M., Li,W., Moresco,J.J., Yates,J.R., Tian,B. and Manley,J.L. (2017) An mtr4/zfc3h1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev., 31, 1257–1271.

83. Silla,T., Karadoulama,E., Ma˛kosa,D., Lubas,M. and Jensen,T.H. (2018) The RNA exosome adaptor ZFC3H1 functionally competes with nuclear export activity to retain target transcripts. Cell Rep., 23, 2199–2210.

84. Silla,T., Schmid,M., Dou,Y., Garland,W., Milek,M., Imami,K., Johnsen,D., Polak,P., Andersen,J.S., Selbach,M. et al. (2020) The human ZC3H3 and RBM26/27 proteins are critical for PAXT-mediated nuclear RNA decay. Nucleic Acids Res., 48, 2518–2530.

85. Wu,G., Schmid,M., Rib,L., Polak,P., Meola,N., Sandelin,A. and Jensen,T.H. (2020) A two-layered targeting mechanism underlies nuclear RNA sorting by the human exosome. Cell Rep., 30, 2387–2401.

86. Fan,J., Kuai,B., Wu,G., Wu,X., Chi,B., Wang,L., Wang,K., Shi,Z.,Zhang,H., Chen,S. et al. (2017) Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export. EMBO J., 36, 2870–2886.

87. Fan,J., Kuai,B., Wang,K., Wang,L., Wang,Y., Wu,X., Chi,B., Li,G. and Cheng,H. (2018) mRNAs are sorted for export or degradation before passing through nuclear speckles. Nucleic Acids Res., 46, 8404–8416.

88. Weir,J.R., Bonneau,F., Hentschel,J. and Conti,E. (2010) Structural analysis reveals the characteristic features of mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proc. Natl. Acad. Sci. U.S.A., 107, 12139–12144.

89. Jackson,R.N., Klauer,A.A., Hintze,B.J., Robinson,H., van Hoof,A. and Johnson,S.J. (2010) The crystal structure of mtr4 reveals a novel arch domain required for rRNA processing. EMBO J., 29, 2205–2216.

90. Hallais,M., Pontvianne,F., Andersen,P.R., Clerici,M., Lener,D., Benbahouche,N.E.H., Gostan,T., Vandermoere,F., Robert,M.-C., Cusack,S. et al. (2013) CBC–ARS2 stimulates 3r-end maturation of multiple RNA families and favors cap-proximal processing. Nat. Struct. Mol. Biol., 20, 1358–1366.

91. Giacometti,S., Benbahouche,N.E.H., Domanski,M., Robert,M.-C., Meola,N., Lubas,M., Bukenborg,J., Andersen,J.S., Schulze,W.M., Verheggen,C. et al. (2017) Mutually exclusive CBC-containing complexes contribute to RNA fate. Cell Rep., 18, 2635–2650.

92. Schulze,W.M., Stein,F., Rettel,M., Nanao,M. and Cusack,S. (2018)Structural analysis of human ARS2 as a platform for co-transcriptional RNA sorting. Nat. Commun., 9, 1701.

93. Lykke-Andersen,S., Rouvie`re,J.O. and Jensen,T.H. (2021) ARS2/SRRT: at the nexus of RNA polymerase II transcription, transcript maturation and quality control. Biochem. Soc. Trans., 49, 1325–1336.

94. Wang,J., Chen,J., Wu,G., Zhang,H., Du,X., Chen,S., Zhang,L., Wang,K., Fan,J., Gao,S. et al. (2019) NRDE2 negatively regulates exosome functions by inhibiting MTR4 recruitment and exosome interaction. Genes Dev., 33, 536–549.

95. Thoms,M., Thomson,E., Baßler,J., Gna¨dig,M., Griesel,S. and Hurt,E. (2015) The exosome is recruited to RNA substrates through specific adaptor proteins. Cell, 162, 1029–1038.

96. Lingaraju,M., Johnsen,D., Schlundt,A., Langer,L.M., Basquin,J., Sattler,M., Heick Jensen,T., Falk,S. and Conti,E. (2019) The MTR4 helicase recruits nuclear adaptors of the human RNA exosome using distinct arch-interacting motifs. Nat. Commun., 10, 3393.

97. Stead,J.A., Costello,J.L., Livingstone,M.J. and Mitchell,P. (2007) The PMC2NT domain of the catalytic exosome subunit rrp6p provides the interface for binding with its cofactor rrp47p, a nucleic acid-binding protein. Nucleic Acids Res., 35, 5556–5567.

98. Schuch,B., Feigenbutz,M., Makino,D.L., Falk,S., Basquin,C., Mitchell,P. and Conti,E. (2014) The exosome-binding factors rrp6 and rrp47 form a composite surface for recruiting the mtr4 helicase. EMBO J., 33, 2829–2846.

99. Falk,S., Bonneau,F., Ebert,J., Ko¨ gel,A. and Conti,E. (2017) Mpp6 incorporation in the nuclear exosome contributes to RNA channeling through the mtr4 helicase. Cell Rep., 20, 2279–2286.

100. Wasmuth,E.V., Zinder,J.C., Zattas,D., Das,M. and Lima,C.D. (2017) Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that mpp6 stimulates RNA decay and recruits the mtr4 helicase. Elife, 6, e29062.

101. Weick,E.-M., Puno,M.R., Januszyk,K., Zinder,J.C., DiMattia,M.A. and Lima,C.D. (2018) Helicase-dependent RNA decay illuminated by a Cryo-EM structure of a human nuclear RNA exosome-mtr4 complex. Cell, 173, 1663–1677.

102. Gerlach,P., Schuller,J.M., Bonneau,F., Basquin,J., Reichelt,P., Falk,S. and Conti,E. (2018) Distinct and evolutionary conserved structural features of the human nuclear exosome complex. Elife, 7, e38686.

103. Puno,M.R. and Lima,C.D. (2018) Structural basis for MTR4–ZCCHC8 interactions that stimulate the MTR4 helicase in the nuclear exosome-targeting complex. Proc. Natl. Acad. Sci. U.S.A., 115, E5506–E5515.

104. Milligan,L., Decourty,L., Saveanu,C., Rappsilber,J., Ceulemans,H., Jacquier,A. and Tollervey,D. (2008) A yeast exosome cofactor, mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol. Cell. Biol., 28, 5446–5457.

105. Feigenbutz,M., Jones,R., Besong,T.M.D., Harding,S.E. and Mitchell,P. (2013) Assembly of the yeast exoribonuclease rrp6 with its associated cofactor rrp47 occurs in the nucleus and is critical for the controlled expression of rrp47. J. Biol. Chem., 288, 15959–15970.

106. Feigenbutz,M., Garland,W., Turner,M. and Mitchell,P. (2013) The exosome cofactor rrp47 is critical for the stability and normal expression of its associated exoribonuclease rrp6 in saccharomyces cerevisiae. PLoS One, 8, e80752.

107. Kim,K., Heo,D., Kim,I., Suh,J.-Y. and Kim,M. (2016) Exosome cofactors connect transcription termination to RNA processing by guiding terminated transcripts to the appropriate exonuclease within the nuclear exosome. J. Biol. Chem., 291, 13229–13242.

108. Fujiwara,N., Yoshikawa,M., Yamazaki,T., Kambe,T., Nagao,M. and Masuda,S. (2010) A screening method tuned for mRNA processing factors in human cells by evaluation of the luciferase reporter activity and the subcellular distribution of bulk poly(a) + RNA. Biosci. Biotechnol. Biochem., 74, 1512–1516.

109. Valencia,P., Dias,A.P. and Reed,R. (2008) Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc. Natl. Acad. Sci. U.S.A., 105, 3386–3391.

110. McQuin,C., Goodman,A., Chernyshev,V., Kamentsky,L., Cimini,B.A., Karhohs,K.W., Doan,M., Ding,L., Rafelski,S.M., Thirstrup,D. et al. (2018) CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol., 16, e2005970.

111. Dao,D., Fraser,A.N., Hung,J., Ljosa,V., Singh,S. and Carpenter,A.E. (2016) CellProfiler analyst: interactive data exploration, analysis and classification of large biological image sets. Bioinformatics, 32, 3210–3212.

112. Folco,E.G., Lei,H., Hsu,J.L. and Reed,R. (2012) Small-scale nuclear extracts for functional assays of gene-expression machineries. J. Vis. Exp., 64, e4140.

113. Masuda,S., Das,R., Cheng,H., Hurt,E., Dorman,N. and Reed,R. (2005) Recruitment of the human TREX complex to mRNA during splicing. Genes Dev., 19, 1512–1517.

114. Jones,D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol., 292, 195–202.

115. Corpet,F. (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res., 16, 10881–10890.

116. Dobin,A., Davis,C.A., Schlesinger,F., Drenkow,J., Zaleski,C., Jha,S., Batut,P., Chaisson,M. and Gingeras,T.R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21.

117. Danecek,P., Bonfield,J.K., Liddle,J., Marshall,J., Ohan,V., Pollard,M.O., Whitwham,A., Keane,T., McCarthy,S.A., Davies,R.M. et al. (2021) Twelve years of SAMtools and BCFtools. Gigascience, 10, giab008.

118. Anders,S., Pyl,P.T. and Huber,W. (2015) HTSeq–a python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166–169.

119. Love,M.I., Huber,W. and Anders,S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550.

120. Wickham,H. (2016) In: ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.

121. Kurtenbach,S. and Harbour,J.W. (2019) In: SparK: A Publication-quality NGS Visualization Tool.

122. Ram´ırez,F., Ryan,D.P., Gru¨ ning,B., Bhardwaj,V., Kilpert,F., Richter,A.S., Heyne,S., Du¨ ndar,F. and Manke,T. (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res., 44, W160–W165.

123. Yu,G., Wang,L.G. and He,Q.Y. (2015) ChIP seeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics, 31, 2382–2383.

124. Yamazaki,T., Souquere,S., Chujo,T., Kobelke,S., Chong,Y.S., Fox,A.H., Bond,C.S., Nakagawa,S., Pierron,G. and Hirose,T. (2018) Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell, 70, 1038–1053.

125. Ilık,I˙.A., Malszycki,M., Lu¨ bke,A.K., Schade,C., Meierhofer,D. and Aktas¸,T. (2020) Son and srrm2 are essential for nuclear speckle formation. Elife, 9, e60579.

126. Tieg,B. and Krebber,H. (2013) Dbp5 - from nuclear export to translation. Biochim. Biophys. Acta - Gene Regul. Mech., 1829, 791–798.

127. Malet,H., Topf,M., Clare,D.K., Ebert,J., Bonneau,F., Basquin,J., Drazkowska,K., Tomecki,R., Dziembowski,A., Conti,E. et al. (2010) RNA channelling by the eukaryotic exosome. EMBO Rep., 11, 936–942.

128. Wasmuth,E.V. and Lima,C.D. (2012) Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel. Mol. Cell, 48, 133–144.

129. Dra˛z˙kowska,K., Tomecki,R., Stodus´,K., Kowalska,K., Czarnocki-Cieciura,M. and Dziembowski,A. (2013) The RNA exosome complex central channel controls both exonuclease and endonuclease dis3 activities in vivo and in vitro. Nucleic Acids Res.,41, 3845–3858.

130. Liu,J.-J., Bratkowski,M.A., Liu,X., Niu,C.-Y., Ke,A. and Wang,H.-W. (2014) Visualization of distinct substrate-recruitment pathways in the yeast exosome by eM. Nat. Struct. Mol. Biol., 21, 95–102.

131. Han,J. and van Hoof,A. (2016) The RNA exosome channeling and direct access conformations have distinct in vivo functions. Cell Rep., 16, 3348–3358.

132. Delan-Forino,C., Schneider,C. and Tollervey,D. (2017) RNA substrate length as an indicator of exosome interactions in vivo. Wellcome Open Res., 2, 34.

133. Delan-Forino,C., Schneider,C. and Tollervey,D. (2017) Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex. PLoS Genet., 13, e1006699.

134. Brouwer,R., Allmang,C., Raijmakers,R., van Aarssen,Y., Egberts,W.V., Petfalski,E., van Venrooij,W.J., Tollervey,D. and Pruijn,G.J.M. (2001) Three novel components of the human exosome. J. Biol. Chem., 276, 6177–6184.

135. Yoshikatsu,Y., Ishida,Y., Sudo,H., Yuasa,K., Tsuji,A. and Nagahama,M. (2015) NVL2, a nucleolar AAA-ATPase, is associated with the nuclear exosome and is involved in pre-rRNA processing. Biochem. Biophys. Res. Commun., 464, 780–786.

136. Chen,C.-Y., Gherzi,R., Ong,S.-E., Chan,E.L., Raijmakers,R., Pruijn,G.J.M., Stoecklin,G., Moroni,C., Mann,M. and Karin,M. (2001) AU binding proteins recruit the exosome to degrade ARE-Containing mRNAs. Cell, 107, 451–464.

137. Tomecki,R., Drazkowska,K., Kucinski,I., Stodus,K., Szczesny,R.J., Gruchota,J., Owczarek,E.P., Kalisiak,K. and Dziembowski,A. (2014) Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. Nucleic Acids Res., 42, 1270–1290.

138. Tavanez,J.P., Calado,P., Braga,J., Lafarga,M. and Carmo-Fonseca,M. (2005) In vivo aggregation properties of the nuclear poly(A)-binding protein PABPN1. RNA, 11, 752–762.

139. Klein,P., Oloko,M., Roth,F., Montel,V., Malerba,A., Jarmin,S., Gidaro,T., Popplewell,L., Perie,S., Lacau St Guily,J. et al. (2016) Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing. Nucleic Acids Res., 44, 10929–10945.

140. Chujo,T., Yamazaki,T., Kawaguchi,T., Kurosaka,S., Takumi,T., Nakagawa,S. and Hirose,T. (2017) Unusual semi-extractability as a hallmark of nuclear body-associated architectural noncoding RNAs. EMBO J., 36, 1447–1462.

141. Iasillo,C., Schmid,M., Yahia,Y., Maqbool,M.A., Descostes,N., Karadoulama,E., Bertrand,E., Andrau,J.-C. and Jensen,T.H. (2017) ARS2 is a general suppressor of pervasive transcription. Nucleic Acids Res., 45, 10229–10241.

142. Wang,R., Zheng,D., Wei,L., Ding,Q. and Tian,B. (2019) Regulation of intronic polyadenylation by PCF11 impacts mRNA expression of long genes. Cell Rep., 26, 2766–2778.

143. Gruber,J.J., Olejniczak,S.H., Yong,J., La Rocca,G., Dreyfuss,G. and Thompson,C.B. (2012) Ars2 promotes proper replication-dependent histone mRNA 3r end formation. Mol. Cell, 45, 87–98.

144. Narita,T., Yung,T.M.C., Yamamoto,J., Tsuboi,Y., Tanabe,H., Tanaka,K., Yamaguchi,Y. and Handa,H. (2007) NELF interacts with CBC and participates in 3r end processing of replication-dependent histone mRNAs. Mol. Cell, 26, 349–365.

145. Fan,J., Wang,K., Du,X., Wang,J., Chen,S., Wang,Y., Shi,M., Zhang,L., Wu,X., Zheng,D. et al. (2019) ALYREF links 3’-end processing to nuclear export of non-polyadenylated mRNAs. EMBO J., 38, e99910.

146. Gockert,M., Schmid,M., Jakobsen,L., Jens,M., Andersen,J.S. and Jensen,T.H. (2022) Rapid factor depletion highlights intricacies of nucleoplasmic RNA degradation. Nucleic Acids Res., 50, 1583–1600.

147. Hilleren,P., McCarthy,T., Rosbash,M., Parker,R. and Jensen,T.H. (2001) Quality control of mRNA 3r-end processing is linked to the nuclear exosome. Nature, 413, 538–542.

148. Wang,Y., Fan,J., Wang,J., Zhu,Y., Xu,L., Tong,D. and Cheng,H. (2021) ZFC3H1 prevents RNA trafficking into nuclear speckles through condensation. Nucleic Acids Res., 49, 10630–10643.

149. Kudo,N., Matsumori,N., Taoka,H., Fujiwara,D., Schreiner,E.P., Wolff,B., Yoshida,M. and Horinouchi,S. (1999) Leptomycin b inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci. U.S.A., 96, 9112–9117.

150. McCloskey,A., Taniguchi,I., Shinmyozu,K. and Ohno,M. (2012) hnRNP c tetramer measures RNA length to classify RNA polymerase II transcripts for export. Science, 335, 1643–1646.

参考文献をもっと見る