リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Measurement of 8B Solar Neutrinos above 2 MeV Threshold Using Novel Background Reducion in KamLAND」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Measurement of 8B Solar Neutrinos above 2 MeV Threshold Using Novel Background Reducion in KamLAND

Hachiya Takahiko 東北大学

2022.11.30

概要

Since its the first real-time measurement by Kamiokande in 1989 through the electron scat- tering (ES), the 8B solar neutrino has been studied to understand the neutrino oscillation. Based on the LMA-MSW solution which was determined by the reactor νe measurement, the survival probability of νe on the earth (Pee) is expected to increase towards lower Eν from 30% (Eν~10 MeV, the matter effect dominant) to 50% (Eν < 1 MeV, the vacuum oscillation dominant). To observe this upturn behavior, neutrino experiments have been lowering their detection thresholds. The current lowest thresholds are, in the recoil-electron kinetic energy (Ekin), 3.5 MeV for water cherenkov (WC) detectors (SK and SNO) and 3 MeV for a liquid scintillator (LS) detector (Borexino). The backgrounds which limit the thresholds are the Rn descendant in the water for WC detectors and γ-rays from detector components like photo-detectors for Borexino. KamLAND, which is a larger LS detector than Borexino, can suppress the γ-ray BGs by the self-shielding. Thus, if other BGs are sufficiently reduced, it can detect 8B solar ν events below 3 MeV.

In this study, with the introduction of the new BG reduction methods, n-tag and shower-tag for muon-spallation products and Day-scale tag and BiTl tag for 208Tl, the sensitivity to single events above 2 MeV energy in KamLAND has significantly improved. It resulted the first measurement of 8B solar ν ES signals at 2–3 MeV (Ekin) region at 3.4σ level. The observed rate was 0.62+0.21 of the unoscillated model expectation, which is consistent with the LMA-MSW. An analysis with the entire energy spectrum lowered the allowance of the flat Pee model from 84% (SK+SNO) to 64% (SK+SNO+KamLAND).

参考文献

[1] K. S. Hirata et al., Observation of 8B solar neutrinos in the Kamiokande-II detector, Phys. Rev. Lett. 63 (1989) 16–19. doi:10.1103/PhysRevLett.63.16. URL https://link.aps.org/doi/10.1103/PhysRevLett.63.16

[2] S. Fukuda et al., Solar 8B and hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data, Phys. Rev. Lett. 86 (2001) 5651–5655. doi:10.1103/ PhysRevLett.86.5651. URL https://link.aps.org/doi/10.1103/PhysRevLett.86.5651

[3] Q. R. Ahmad et al., Measurement of the Rate of νe + d → p + p + e Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301. doi:10.1103/PhysRevLett.87.071301. URL https://link.aps.org/doi/10.1103/PhysRevLett.87.071301

[4] K. Eguchi et al., First Results from KamLAND: Evidence for Reactor Antineutrino Disappearance (Jan 2003). doi:10.1103/PhysRevLett.90.021802. URL https://link.aps.org/doi/10.1103/PhysRevLett.90.021802

[5] S. Petcov, M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Physics Letters B 533 (2002) 94–106. doi:https://doi.org/10.1016/S0370-2693(02)01591-5. URL https://www.sciencedirect.com/science/article/pii/ S0370269302015915

[6] A. Gando et al., Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503. doi:10.1103/ PhysRevLett.117.082503. URL https://link.aps.org/doi/10.1103/PhysRevLett.117.082503

[7] KamLAND-Zen Collaboration, First Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen (2022). doi:10.48550/ ARXIV.2203.02139. URL https://arxiv.org/abs/2203.02139

[8] T. S. collaboration et al., The SNO+ experiment, Journal of Instrumentation 16 (2021) P08059. doi:10.1088/1748- 0221/16/08/P08059. URL https://dx.doi.org/10.1088/1748-0221/16/08/P08059

[9] J. N. Bahcall, Neutrino astrophysics, Cambridge University Press, 1989.

[10] N. Vinyoles et al., A New Generation of Standard Solar Models, The Astrophysical Journal 835 (2017) 202. doi:10.3847/1538-4357/835/2/202. URL https://dx.doi.org/10.3847/1538-4357/835/2/202

[11] N. Grevesse, A. J. Sauval, Standard Solar Composition, Space Science Reviews 85 (1998) 161–174. doi:10.1023/A:1005161325181. URL https://doi.org/10.1023/A:1005161325181

[12] M. Asplund et al., The Chemical Composition of the Sun, Annual Review of Astronomy and Astrophysics 47 (2009) 481–522. arXiv:https://doi.org/ 10.1146/annurev.astro.46.060407.145222, doi:10.1146/annurev.astro.46. 060407.145222. URL https://doi.org/10.1146/annurev.astro.46.060407.145222

[13] X.-J. Xu, Z. Wang, S. Chen, Solar neutrino physics (2022). doi:10.48550/ARXIV. 2209.14832. URL https://arxiv.org/abs/2209.14832

[14] B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Zh. Eksp. Teor. Fiz. 34 (1957) 247.

[15] Z. Maki, M. Nakagawa, S. Sakata, Remarks on the Unified Model of Elementary Particles, Progress of Theoretical Physics 28 (1962) 870–880. arXiv:https:// academic.oup.com/ptp/article-pdf/28/5/870/5258750/28-5-870.pdf, doi: 10.1143/PTP.28.870. URL https://doi.org/10.1143/PTP.28.870

[16] T. Araki et al., Measurement of Neutrino Oscillation with KamLAND: Evi- dence of Spectral Distortion, Phys. Rev. Lett. 94 (2005) 081801. doi:10.1103/ PhysRevLett.94.081801. URL https://link.aps.org/doi/10.1103/PhysRevLett.94.081801

[17] Y. Fukuda et al., Evidence for Oscillation of Atmospheric Neutrinos, Phys. Rev. Lett. 81 (1998) 1562–1567. doi:10.1103/PhysRevLett.81.1562. URL https://link.aps.org/doi/10.1103/PhysRevLett.81.1562

[18] K. Abe et al., Solar neutrino measurements in Super-Kamiokande-IV, Phys. Rev. D 94 (2016) 052010. doi:10.1103/PhysRevD.94.052010. URL https://link.aps.org/doi/10.1103/PhysRevD.94.052010

[19] B. Aharmim et al., Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501. doi: 10.1103/PhysRevC.88.025501. URL https://link.aps.org/doi/10.1103/PhysRevC.88.025501

[20] G. Bellini et al., Precision Measurement of the 7Be Solar Neutrino Interaction Rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302. doi:10.1103/PhysRevLett.107.141302. URL https://link.aps.org/doi/10.1103/PhysRevLett.107.141302

[21] M. G. Aartsen et al., Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data, Phys. Rev. D 91 (2015) 072004. doi:10.1103/PhysRevD.91.072004. URL https://link.aps.org/doi/10.1103/PhysRevD.91.072004

[22] K. Abe et al., Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV, Phys. Rev. D 97 (2018) 072001. doi:10.1103/PhysRevD. 97.072001. URL https://link.aps.org/doi/10.1103/PhysRevD.97.072001

[23] A. Gando et al., Reactor on-off antineutrino measurement with KamLAND, Phys. Rev. D 88 (2013) 033001. doi:10.1103/PhysRevD.88.033001. URL https://link.aps.org/doi/10.1103/PhysRevD.88.033001

[24] Y. Abe et al., Measurement of θ13 in Double Chooz using neutron captures on hy- drogen with novel background rejection techniques, Journal of High Energy Physics 2016 (2016) 163. doi:10.1007/JHEP01(2016)163. URL https://doi.org/10.1007/JHEP01(2016)163

[25] F. P. An et al., Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay*, Chinese Physics C 41 (2017) 013002. doi:10.1088/1674-1137/41/ 1/013002. URL https://dx.doi.org/10.1088/1674-1137/41/1/013002

[26] J. K. Ahn et al., Observation of Reactor Electron Antineutrinos Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802. doi:10.1103/ PhysRevLett.108.191802. URL https://link.aps.org/doi/10.1103/PhysRevLett.108.191802

[27] P. Adamson et al., Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS, Phys. Rev. Lett. 110 (2013) 251801. doi: 10.1103/PhysRevLett.110.251801. URL https://link.aps.org/doi/10.1103/PhysRevLett.110.251801

[28] K. Abe et al., Search for Electron Antineutrino Appearance in a Long-Baseline Muon Antineutrino Beam, Phys. Rev. Lett. 124 (2020) 161802. doi:10.1103/ PhysRevLett.124.161802. URL https://link.aps.org/doi/10.1103/PhysRevLett.124.161802

[29] M. A. Acero et al., Improved measurement of neutrino oscillation parameters by the NOvA experiment, Phys. Rev. D 106 (2022) 032004. doi:10.1103/PhysRevD. 106.032004. URL https://link.aps.org/doi/10.1103/PhysRevD.106.032004

[30] I. Esteban et al., The fate of hints: updated global analysis of three-flavor neu- trino oscillations, Journal of High Energy Physics 2020 (sep 2020). doi:10.1007/ jhep09(2020)178. URL https://doi.org/10.1007%2Fjhep09%282020%29178

[31] NuFIT 5.1 (2021). URL http://www.nu-fit.org/

[32] L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369–2374. doi:10.1103/PhysRevD.17.2369. URL https://link.aps.org/doi/10.1103/PhysRevD.17.2369

[33] S. P. Mikheyev, A. Y. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913–917.

[34] X. Shi, D. N. Schramm, J. N. Bahcall, Monte Carlo exploration of Mikheyev- Smirnov-Wolfenstein solutions to the solar neutrino problem, Phys. Rev. Lett. 69 (1992) 717–720. doi:10.1103/PhysRevLett.69.717. URL https://link.aps.org/doi/10.1103/PhysRevLett.69.717

[35] G. D. Orebi Gann et al., The Future of Solar Neutrinos, Annual Review of Nu- clear and Particle Science 71 (2021) 491–528. arXiv:https://doi.org/10.1146/ annurev-nucl-011921-061243, doi:10.1146/annurev-nucl-011921-061243. URL https://doi.org/10.1146/annurev-nucl-011921-061243

[36] A. N. Ioannisian, A. Y. Smirnov, Neutrino Oscillations in Low Density Medium, Phys. Rev. Lett. 93 (2004) 241801. doi:10.1103/PhysRevLett.93.241801. URL https://link.aps.org/doi/10.1103/PhysRevLett.93.241801

[37] M. Blennow, T. Ohlsson, H. Snellman, Day-night effect in solar neutrino oscillations with three flavors, Phys. Rev. D 69 (2004) 073006. doi:10.1103/PhysRevD.69. 073006. URL https://link.aps.org/doi/10.1103/PhysRevD.69.073006

[38] Y. Nakajima, Recent results and future prospects from Super- Kamiokande (Jun. 2020). doi:10.5281/zenodo.3959640. URL https://doi.org/10.5281/zenodo.3959640

[39] J. N. Bahcall, M. Kamionkowski, A. Sirlin, Solar neutrinos: Radiative corrections in neutrino-electron scattering experiments, Phys. Rev. D 51 (1995) 6146–6158. doi:10.1103/PhysRevD.51.6146. URL https://link.aps.org/doi/10.1103/PhysRevD.51.6146

[40] A. Bellerive et al., The Sudbury Neutrino Observatory, Nuclear Physics B 908 (2016) 30–51, neutrino Oscillations: Celebrating the Nobel Prize in Physics 2015. doi:https://doi.org/10.1016/j.nuclphysb.2016.04.035. URL https://www.sciencedirect.com/science/article/pii/ S0550321316300736

[41] J. Arafune et al., 13C as a solar neutrino detector, Physics Letters B 217 (1989) 186–190. doi:https://doi.org/10.1016/0370 2693(89)91540-2. URL https://www.sciencedirect.com/science/article/pii/ 0370269389915402

[42] M. Fukugita et al., Reaction cross sections for ν 13e− 13N and ν 13ν ’ 13C∗ for low energy neutrinos, Phys. Rev. C 41 (1990) 1359–1364. doi:10.1103/PhysRevC.41. 1359. URL https://link.aps.org/doi/10.1103/PhysRevC.41.1359

[43] T. Suzuki, A. B. Balantekin, T. Kajino, Neutrino capture on 13C, Phys. Rev. C 86 (2012) 015502. doi:10.1103/PhysRevC.86.015502. URL https://link.aps.org/doi/10.1103/PhysRevC.86.015502

[44] T. Suzuki et al., Neutrino-13C cross sections at supernova neutrino energies, Jour- nal of Physics G: Nuclear and Particle Physics 46 (2019) 075103. doi:10.1088/ 1361-6471/ab1c11. URL https://dx.doi.org/10.1088/1361-6471/ab1c11

[45] M. Anderson et al., Measurement of the 8B solar neutrino flux in SNO+ with very low backgrounds, Phys. Rev. D 99 (2019) 012012. doi:10.1103/PhysRevD.99. 012012. URL https://link.aps.org/doi/10.1103/PhysRevD.99.012012

[46] G. Bellini et al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006. doi:10.1103/PhysRevD.82.033006. URL https://link.aps.org/doi/10.1103/PhysRevD.82.033006

[47] M. Agostini et al., Improved measurement of 8B solar neutrinos with 1.5 kt y of Borexino exposure, Phys. Rev. D 101 (2020) 062001. doi:10.1103/PhysRevD.101. 062001. URL https://link.aps.org/doi/10.1103/PhysRevD.101.062001

[48] S. Abe et al., Measurement of the 8B solar neutrino flux with the KamLAND liquid scintillator detector, Phys. Rev. C 84 (2011) 035804. doi:10.1103/PhysRevC.84. 035804. URL https://link.aps.org/doi/10.1103/PhysRevC.84.035804

[49] M. Buizza Avanzini, The 8B Solar Neutrino Analysis in Borexino and Simulations of Muon Interaction Products in Borexino and Double Chooz, Ph.D. thesis, Milan U. (2012).

[50] S. Abe et al., Abundances of Uranium and Thorium Elements in Earth Es- timated by Geoneutrino Spectroscopy, Geophysical Research Letters 49 (2022) e2022GL099566, e2022GL099566 2022GL099566. arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2022GL099566, doi:https://doi.org/10.1029/2022GL099566. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/ 2022GL099566

[51] A. Gando et al., 7Be solar neutrino measurement with KamLAND, Phys. Rev. C 92 (2015) 055808. doi:10.1103/PhysRevC.92.055808. URL https://link.aps.org/doi/10.1103/PhysRevC.92.055808

[52] S. Abe et al., Search for Low-energy Electron Antineutrinos in KamLAND Associ- ated with Gravitational Wave Events, The Astrophysical Journal 909 (2021) 116. doi:10.3847/1538-4357/abd5bc. URL https://doi.org/10.3847/1538-4357/abd5bc

[53] S. Abe et al., Limits on Astrophysical Antineutrinos with the KamLAND Experi- ment, The Astrophysical Journal 925 (2022) 14. doi:10.3847/1538-4357/ac32c1. URL https://doi.org/10.3847/1538-4357/ac32c1

[54] S. Abe et al., A Search for Correlated Low-energy Electron Antineutrinos in KamLAND with Gamma-Ray Bursts, The Astrophysical Journal 927 (2022) 69. doi:10.3847/1538-4357/ac4e7e. URL https://doi.org/10.3847/1538-4357/ac4e7e

[55] S. Abe et al., Production of radioactive isotopes through cosmic muon spallation in KamLAND, Phys. Rev. C 81 (2010) 025807. doi:10.1103/PhysRevC.81.025807. URL https://link.aps.org/doi/10.1103/PhysRevC.81.025807

[56] T. Iwamoto, Measurement of Reactor Anti-Neutrino Disappearance in KamLAND, Ph.D. thesis, Tohoku university (2003). URL http://www.awa.tohoku.ac.jp/KamLAND/internal/ThesisFile_KamLAND/ iwamoto_d.pdf

[57] Y. Takemoto, Observation of 7Be Solar Neutrinos with KamLAND, Ph.D. thesis, Tohoku university (2014). URL https://www.awa.tohoku.ac.jp/Thesis/ThesisFile/takemoto_ yasuhiro_d.pdf

[58] O. Tajima, Measurement of Electron Anti-Neutrino Oscillation Parameters with a Large Volume Liquid Scintillator Detector, KamLAND, Ph.D. thesis, Tohoku university (2003). URL http://www.awa.tohoku.ac.jp/KamLAND/internal/ThesisFile_KamLAND/ tajima_osamu_d.pdf

[59] K. Oki, 高精度大口径光電子増倍管の開発研究 (Research and development of high-precision large-aperture photomultiplier tubes) (1999). URL https://www.awa.tohoku.ac.jp/Thesis/ThesisFile/oki_kazuhiro_m. pdf

[60] K. Tagashira, 高精度17 インチ光電子増倍管の性能計測研究 (Performance measure- ment study of high-precision 17-inch photomultiplier tubes) (2000). URL https://www.awa.tohoku.ac.jp/Thesis/ThesisFile/tagashira_kenji_ m.pdf

[61] L. A. Winslow, First Solar Neutrinos from KamLAND: A Measurement of the B-8 Solar Neutrino Flux, Ph.D. thesis, UC, Berkeley (2008).

[62] H. Ozaki, Refurbishment of KamLAND Outer Cherenkov Detector and Improve- ment in Performance (2017). URL https://www.awa.tohoku.ac.jp/Thesis/ThesisFile/ozaki_hideyoshi_ m.pdf

[63] Y. Gando et al., The nylon balloon for xenon loaded liquid scintillator in KamLAND- Zen 800 neutrinoless double-beta decay search experiment, Journal of Instrumenta- tion 16 (2021) P08023. doi:10.1088/1748-0221/16/08/p08023. URL https://doi.org/10.1088/1748-0221/16/08/p08023

[64] K. Nakajima, First Results from 7Be Solar Neutrino Observation with KamLAND, Ph.D. thesis, Tohoku university (2010). URL https://www.awa.tohoku.ac.jp/KamLAND/internal/ThesisFile_ KamLAND/nakajima_kyohei_d.pdf

[65] G. Keefer et al., Laboratory studies on the removal of radon-born lead from Kam- LAND’s organic liquid scintillator, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip- ment 769 (2015) 79–87. doi:https://doi.org/10.1016/j.nima.2014.09.050. URL https://www.sciencedirect.com/science/article/pii/S016890021401078X

[66] H. Watanabe, Comprehensive Study of Anti-neutrino Signals at KamLAND, Ph.D. thesis, Tohoku university (2012). URL http://www.awa.tohoku.ac.jp/KamLAND/internal/ThesisFile_KamLAND/ watanabe_hiroko_d.pdf

[67] S. Enomoto, Neutrino Geophysics and Observation of Geo-Neutrinos at KamLAND, Ph.D. thesis, Tohoku university (2005). URL http://www.awa.tohoku.ac.jp/Thesis/ThesisFile/enomoto_sanshiro_ d.pdf

[68] T. Hachiya, Delayed coincidence with a day-scale window for tagging 232Th series isotopes in KamLAND, Journal of Physics: Conference Series 1468 (2020) 012257. doi:10.1088/1742-6596/1468/1/012257. URL https://doi.org/10.1088/1742-6596/1468/1/012257

[69] A. Oki, 新トリガーによるKamLAND-Zen 実験での10C バックグラウンド除去 (10C Background Reduction in KamLAND-Zen Using New Trigger) (2013). URL https://www.awa.tohoku.ac.jp/Thesis/ThesisFile/oki_ayumu_m.pdf

[70] T. Banks et al., A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip- ment 769 (2015) 88–96. doi:https://doi.org/10.1016/j.nima.2014.09.068. URL https://www.sciencedirect.com/science/article/pii/S0168900214011000

[71] B. E. Berger et al., The KamLAND full-volume calibration system, Journal of In- strumentation 4 (2009) P04017–P04017. doi:10.1088/1748-0221/4/04/p04017. URL https://doi.org/10.1088/1748-0221/4/04/p04017

[72] G. Keefer, Calibration 222Rn Introduction During Z-Axis Calibrations , KamLAND Collaboration Meeting (Sep 2007).

[73] Private conversation with Prof. Tadao Mitsui (Jun 2022).

[74] Y. Kibe, PPO concentration of LS before and after distillation, KamLAND Collab- oration Meeting (Sep 2007).

[75] ATOMIC WEIGHTS OF THE ELEMENTS 2015. URL https://iupac.qmul.ac.uk/AtWt/AtWt15.html

[76] S. Enomoto, (α, n) Background Overview , KamLAND Collaboration Meeting (Oct 2004).

[77] Chemical Book. URL https://www.chemicalbook.com/ProductMSDSDetailCB3693821_EN.htm

[78] Fisher Scientic. URL https://www.fishersci.com/shop/products/ 2-5-diphenyloxazole-99-thermo-scientific/AAA1065414

[79] K. Ichimura, T. Ebihara, Transmission, light yield and gas chromatography of Kam- LAND LS , KamLAND Collaboration Meeting (Sep 2006).

[80] H. Watanabe et al., PPO concentration of LS after distillation , KamLAND Col- laboration Meeting (Mar 2009).

[81] S. Matsuda, Search for Neutrinoless Double-Beta Decay in 136Xe after Inten- sive Background Reduction with KamLAND-Zen, Ph.D. thesis, Tohoku university (2016). URL http://www.awa.tohoku.ac.jp/Thesis/ThesisFile/matsuda_sayuri_d. pdf

[82] S. Obara, A Search for Supernova Relic Neutrinos with KamLAND during Reactor- Off Period, Ph.D. thesis, Tohoku university (2018). URL http://www.awa.tohoku.ac.jp/KamLAND/internal/ThesisFile_KamLAND/ obara_shuhei_d.pdf

[83] M. Batygov, Combined Study of Reactor and Terrestrial Antineutrinos with Kam- LAND, Ph.D. thesis, University of Tennessee (2006). URL https://trace.tennessee.edu/utk_graddiss/1918/

[84] K. Ichimura, Precise measurement of neutrino oscillation parameters with Kam- LAND, Ph.D. thesis, Tohoku university (2008). URL http://www.awa.tohoku.ac.jp/KamLAND/internal/ThesisFile_KamLAND/ ichimura_koichi_d.pdf

[85] K. Ichimura, 4-pi analysis , KamLAND Collaboration Meeting (Oct 2020).

[86] N. Kawada, Spectroscopic measurement of geoneutrinos from uranium and thorium with KamLAND, Ph.D. thesis, Tohoku university (2022). URL https://www.awa.tohoku.ac.jp/Thesis/Doctor_Thesis.html

[87] M. Batygov, New Energy Fitter Development and Tests , KamLAND Collaboration Meeting (Oct 2005).

[88] I. Shimizu, Energy Tool Update , KamLAND Collaboration Meeting (Sep 2009).

[89] I. Shimizu, An Evidence for Spectral Distortion of Reactor Anti-Neutrinos and A Study of Three Flavor Neutrino Oscillation, Ph.D. thesis, Tohoku university (2005). URL http://www.awa.tohoku.ac.jp/KamLAND/internal/ThesisFile_KamLAND/ shimizu_itaru_d.pdf

[90] Y. Shimizu, Observation of Geo-Neutrinos with KamLAND, Ph.D. thesis, Tohoku university (2010). URL http://www.awa.tohoku.ac.jp/KamLAND/internal/ThesisFile_KamLAND/ shimizu_yuri_d.pdf

[91] T. Mitsui, CPT-invariant Energy Scale , KamLAND Collaboration Meeting (Sep 2009).

[92] T. Mitsui, CPT-invariant Energy Scale II , KamLAND Collaboration Meeting (Mar 2010).

[93] T. Mitsui, - , KamLAND Collaboration Meeting (Somewhere 2003–2005).

[94] T. Bj¨ornstad et al., The decay of 8He, Nuclear Physics A 366 (1981) 461–468. doi:https://doi.org/10.1016/0375-9474(81)90522-4. URL https://www.sciencedirect.com/science/article/pii/ 0375947481905224

[95] D. Tilley et al., Energy levels of light nuclei A=8,9,10, Nuclear Physics A 745 (2004) 155–362. doi:https://doi.org/10.1016/j.nuclphysa.2004.09.059. URL https://www.sciencedirect.com/science/article/pii/ S0375947404010267

[96] Y. Karino, KamLAND-Zen 実験における宇宙線ミューオン起源のバックグラウンド除去効率の改善 (Improvement of Background Rejection for Cosmic Muon Spallation in KamLAND-Zen) (2017). URL https://www.awa.tohoku.ac.jp/Thesis/ThesisFile/karino_yuki_m.pdf

[97] S. W. Li, J. F. Beacom, Tagging spallation backgrounds with showers in water Cherenkov detectors, Phys. Rev. D 92 (2015) 105033. doi:10.1103/PhysRevD.92.105033. URL https://link.aps.org/doi/10.1103/PhysRevD.92.105033

[98] Y. Gando, First results of KamLAND-Zen 800, Journal of Physics: Conference Series 1468 (2020) 012142. doi:10.1088/1742- 6596/1468/1/012142. URL https://doi.org/10.1088/1742-6596/1468/1/012142

[99] S. Ieki, Summary page of FLUKA simulation (KamLAND internal) (2022). URL https://www.awa.tohoku.ac.jp/KamLAND-Zen/internal/KamWiki/ dokuwiki/doku.php?id=local:ieki:fluka

[100] H. Ozaki, High Sensitivity Search for Neutrinoless Double-Beta Decay in KamLAND-Zen with Double Amount of 136Xe, Ph.D. thesis, Tohoku university (2020). URL https://www.awa.tohoku.ac.jp/KamLAND-Zen/internal/ThesisFile_ KamLAND-Zen/ozaki_hideyoshi_d.pdf

[101] Y. Kibe, Observation of 8B Solar Neutrinos with KamLAND, Ph.D. thesis, Tohoku university (2010). URL http://www.awa.tohoku.ac.jp/KamLAND/internal/ThesisFile_KamLAND/ kibe_yoshiaki_d.pdf

[102] PSTAR. URL https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html

[103] J. N. Bahcall, M. H. Pinsonneault, What do we (not) know theoretically about solar neutrino fluxes?, Phys. Rev. Lett. 92 (2004) 121301. doi:10.1103/PhysRevLett. 92.121301. URL https://link.aps.org/doi/10.1103/PhysRevLett.92.121301

[104] A. Abusleme et al., Feasibility and physics potential of detecting 8B solar neutrinos at JUNO *, Chinese Physics C 45 (2021) 023004. doi:10.1088/1674-1137/abd92a. URL https://dx.doi.org/10.1088/1674-1137/abd92a

[105] JUNO Collaboration et al., Model Independent Approach of the JUNO 8B Solar Neutrino Program (2022). doi:10.48550/ARXIV.2210.08437. URL https://arxiv.org/abs/2210.08437

[106] A. Li et al., KamNet: An Integrated Spatiotemporal Deep Neural Network for Rare Event Search in KamLAND-Zen (2022). doi:10.48550/ARXIV.2203.01870. URL https://arxiv.org/abs/2203.01870

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る