リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hydrogen Isotope Productions in Sn+Sn Collisions with Radioactive Beams at 270 MeV/nucleon」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hydrogen Isotope Productions in Sn+Sn Collisions with Radioactive Beams at 270 MeV/nucleon

Kaneko, Masanori 京都大学 DOI:10.14989/doctor.k23700

2022.03.23

概要

核子あたり入射エネルギー数百MeVの重イオン衝突は、標準核密度を超える高密度核物質の性質を調べる良いプローブを与える。特に、対称エネルギーの高密度における振舞いは中性子星の質量・半径曲線などの諸性質と密接に関連するため、興味深い研究対象となっている。重イオン衝突において、高密度対称エネルギーの効果は反応初期の中性子・陽子ダイナミクスに現れるため、それを反映する観測量として荷電パイオン収量比などが測定されてきた。しかしながら、それらのデータは金+金衝突などの安定核を用いたものに限られ、実験結果の解釈が理論モデルに強く依存するという大きな問題を抱えている。こうした状況から、アイソスピン自由度に焦点を当てた系統的な測定が望まれていた。そこで本研究では、対称エネルギーをより効率的に引き出すために、核子あたり270 MeVのスズ同位体ビームと安定なスズ標的を組み合わせた四種類の衝突系:132Sn + 124Sn、124Sn + 112Sn、112Sn + 124Sn、108Sn + 112Snを系統的に測定した。中性子数のみが異なる系を比較することで、衝突ダイナミクスに現れるクーロン力やアイソスカラー効果をキャンセルし、対称エネルギーに由来する効果のみが強調できると期待される。実験は理化学研究所RIBFにおいて実施し、SAMURAI双極電磁石と3次元飛跡検出器(Time Projection Chamber:TPC)を組み合わせることにより、反応によって生じた荷電粒子の測定を広い範囲で行った。

本申請論文では、取得したデータのうち、132Sn + 124Sn、108Sn + 112Snの二種類の衝突系について解析を行い、それぞれの系の中心衝突から放出された陽子、重陽子、三重陽子(p, d, t)生成の結果についてまとめている。RIBFのビームライン検出器を用いたビーム粒子識別、TPCにより再構成した反応点の情報を用いた背景事象の除去、TPCで検出された荷電粒子多重度を用いた中心衝突事象の選択の後、荷電粒子の質量対磁気剛性の情報からp, d, tを同定し、横運動量対ラピディティの二次元位相空間分布を導出した。この位相空間分布を横運動量軸に沿って積分することにより得たラピディティ分布を反対称化分子動力学(AMD)に基づく理論輸送モデル計算と比較した。その結果、AMD計算は実験データに比べてラピディティ分布の幅が広く、tの収量が中心ラピディティ領域において不足していることが判明した。この食い違いは、理論モデルにおいて試験的にパラメータを調節することでデータを再現できることがわかった。系の中性子ダイナミクスを反映すると考えられるd/p, t/pの収量比をさらに二つの系の比を取ることで二重断面積比(DRd/p, DRt/p)を構築したところ、中心ラピディティ領域において(DRd/p)2 = DRt/pというスケーリング関係が成り立ち、さらに、DRd/pとDRt/pは二つの衝突系が持つ中性子数の比とその自乗にそれぞれ一致するという傾向が見られた。これはd/pやt/pが反映すると考えられる中性子密度は対称エネルギーの影響により決定されるが、非対称度の異なる二つの系でその影響に大きな差がないことを示唆し、その高密度での効果が弱いと解釈できる。実際に対称エネルギーの傾きパラメーターLの値を46 MeVと108 MeVの二つの場合を仮定したAMD計算によると、DRt/pは強い対称エネルギー依存性を示し、実験データと比較したところL=108 MeVよりもL=46 MeVの計算結果を支持していることが示された。

この論文で使われている画像

参考文献

[1] B. P. Abbott, et al., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Physical Review Letters 119, 161101 (2017).

[2] B. P. Abbott, et al., Multi-messenger Observations of a Binary Neutron Star Merger, The Astrophysical Journal 848, L12 (2017).

[3] B. P. Abbott, et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, The Astrophysical Journal 848, L13 (2017).

[4] A. Goldstein, et al., An ordinary short gamma-ray burst with extraordinary implications: Fermi -GBM detection of GRB 170817A, The Astrophysical Journal 848, L14 (2017).

[5] V. Savchenko, et al., INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817, The Astrophysical Journal 848, L15 (2017).

[6] S. J. Smartt, et al., A kilonova as the electromagnetic counterpart to a gravitational-wave source, Nature 551, 75 (2017).

[7] D. Kasen, et al., Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event, Nature 551, 80 (2017).

[8] R. Chornock, et al., The electromagnetic counterpart of the binary neutron star merger LIGO/virgo GW170817. IV. Detection of near-infrared signatures of r-process nucleosyn- thesis with gemini-south, The Astrophysical Journal 848, L19 (2017).

[9] N. R. Tanvir, et al., The emergence of a lanthanide-rich kilonova following the merger of two neutron stars, The Astrophysical Journal 848, L27 (2017).

[10] W. Reisdorf, et al., Systematics of pion emission in heavy ion collisions in the 1A GeV regime, Nuclear Physics A 781, 459 (2007).

[11] P. Russotto, et al., Symmetry energy from elliptic flow in 197Au+197Au, Physics Letters B 697, 471 (2011).

[12] P. Russotto, et al., Results of the ASY-EOS experiment at GSI: The symmetry energy at suprasaturation density, Physical Review C 94, 034608 (2016).

[13] Z. Xiao, et al., Circumstantial evidence for a soft nuclear symmetry energy at suprasaturation densities, Physical Review Letters 102, 062502 (2009).

[14] Z.-Q. Feng et al., Probing high-density behavior of symmetry energy from pion emission in heavy-ion collisions, Physics Letters B 683, 140 (2010).

[15] M. D. Cozma, et al., Toward a model-independent constraint of the high-density dependence of the symmetry energy, Physical Review C 88, 044912 (2013).

[16] M. D. Cozma, Feasibility of constraining the curvature parameter of the symmetry energy using elliptic flow data, The European Physical Journal A 54, 40 (2018).

[17] A. Ono, et al., Antisymmetrized Version of Molecular Dynamics with Two-Nucleon Colli- sions and its Application to Heavy Ion Reactions, Progress of Theoretical Physics 87, 1185 (1992).

[18] N. Ikeno, et al., Probing neutron-proton dynamics by pions, Physical Review C 93, 044612 (2016).

[19] A. Ono, Cluster correlations in multifragmentation, Journal of Physics: Conference Series 420, 012103 (2013).

[20] A. Ono, in Proceedings of 13th International Conference on Nucleus-Nucleus Collisions (Journal of the Physical Society of Japan, Saitama, Japan, 2020).

[21] M. Kaneko, et al., Kyoto Multiplicity Array for the SuRIT experiment, RIKEN Accelerator Progress Report 50, 172 (2017).

[22] A technical paper on the multiplicity trigger detector is under preparation, which is going to be submitted to NIM journal.

[23] M. Kaneko, et al., Rapidity distributions of Z = 1 isotopes and the nuclear symmetry energy from Sn+Sn collisions with radioactive beams at 270 MeV/nucleon, Physics Letters B 822, 136681 (2021).

[24] X. Roca-Maza et al., Nuclear equation of state from ground and collective excited state properties of nuclei, Progress in Particle and Nuclear Physics 101, 96 (2018).

[25] P. Danielewicz, et al., Determination of the Equation of State of Dense Matter, Science 298, 1592 (2002).

[26] J. M. Lattimer et al., Neutron star observations: Prognosis for equation of state constraints, Physics Reports 442, 109 (2007).

[27] I. Bombaci et al., Asymmetric nuclear matter equation of state, Physical Review C 44, 1892 (1991).

[28] A. Steiner, et al., Isospin asymmetry in nuclei and neutron stars, Physics Reports 411, 325 (2005).

[29] C.-H. Lee, et al., Nuclear symmetry energy, Physical Review C 57, 3488 (1998).

[30] I. Lagaris et al., Variational calculations of asymmetric nuclear matter, Nuclear Physics A 369, 470 (1981).

[31] J. Xu, et al., Locating the inner edge of the neutron star crust using terrestrial nuclear laboratory data, Physical Review C 79, 035802 (2009).

[32] C. Gonzalez-Boquera, et al., Higher-order symmetry energy and neutron star core-crust transition with Gogny forces, Physical Review C 96, 065806 (2017).

[33] H. Jiang, et al., Model dependence of the I4 term in the symmetry energy for finite nuclei, Physical Review C 91, 054302 (2015).

[34] J. Blaizot, Nuclear compressibilities, Physics Reports 64, 171 (1980).

[35] D. H. Youngblood, et al., Incompressibility of nuclear matter from the giant monopole resonance, Physical Review Letters 82, 691 (1999).

[36] S. Shlomo, et al., Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes, The European Physical Journal A - Hadrons and Nuclei 30, 23 (2006).

[37] G. Colò, et al., Microscopic determination of the nuclear incompressibility within the non- relativistic framework, Physical Review C 70, 024307 (2004).

[38] L.-W. Chen et al., Correlations between the nuclear breathing mode energy and properties of asymmetric nuclear matter, Journal of Physics G: Nuclear and Particle Physics 39, 035104 (2012).

[39] J. R. Stone, et al., Incompressibility in finite nuclei and nuclear matter, Physical Review C 89, 044316 (2014).

[40] J. Aichelin et al., Subthreshold kaon production as a probe of the nuclear equation of state, Physical Review Letters 55, 2661 (1985).

[41] C. Fuchs, et al., Origin of subthreshold K+ production in heavy ion collisions, Physical Review C 56, R606 (1997).

[42] C. Fuchs, et al., Probing the nuclear equation of state by K+ production in heavy-ion collisions, Physical Review Letters 86, 1974 (2001).

[43] C. Sturm, et al., Evidence for a soft nuclear equation-of-state from kaon production in heavy-ion collisions, Physical Review Letters 86, 39 (2001).

[44] A. Schmah, et al., Kaon and pion emission in asymmetric C+Au and Au+C collisions at 1.0A GeV and 1.8A GeV, Physical Review C 71, 064907 (2005).

[45] C. Fuchs et al., Modelization of the EOS, The European Physical Journal A - Hadrons and Nuclei 30, 5 (2006).

[46] C. Hartnack, et al., Hadronic matter is soft, Physical Review Letters 96, 012302 (2006).

[47] A. Andronic, et al., Systematics of stopping and flow in Au+ Au collisions, The European Physical Journal A - Hadrons and Nuclei 30, 31 (2006).

[48] W. Reisdorf, et al., Systematics of azimuthal asymmetries in heavy ion collisions in the 1A GeV regime, Nuclear Physics A 876, 1 (2012).

[49] A. Le Fèvre, et al., Constraining the nuclear matter equation of state around twice saturation density, Nuclear Physics A 945, 112 (2016).

[50] Y. Wang, et al., Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A–1.0A GeV, Physics Letters B 778, 207 (2018).

[51] G. Taranto, et al., Selecting microscopic equations of state, Physical Review C 87, 045803 (2013).

[52] C. J. Horowitz, et al., A way forward in the study of the symmetry energy: Experiment, theory, and observation, Journal of Physics G: Nuclear and Particle Physics 41, 093001 (2014).

[53] M. Baldo et al., The Nuclear Symmetry Energy, Progress in Particle and Nuclear Physics 91, 203 (2016).

[54] V. Baran, et al., Isospin effects in nuclear fragmentation, Nuclear Physics A 703, 603 (2002).

[55] P. Möller, et al., New finite-range droplet mass model and equation-of-state parameters, Physical Review Letters 108, 052501 (2012).

[56] P. Danielewicz, et al., Symmetry energy III: Isovector skins, Nuclear Physics A 958, 147 (2017).

[57] P. Danielewicz et al., Symmetry energy II: Isobaric analog states, Nuclear Physics A 922, 1 (2014).

[58] M. A. Famiano, et al., Neutron and Proton Transverse Emission Ratio Measurements and the Density Dependence of the Asymmetry Term of the Nuclear Equation of State, Physical Review Letters 97, 052701 (2006).

[59] M. B. Tsang, et al., Isospin diffusion and the nuclear symmetry energy in heavy ion reactions, Physical Review Letters 92, 062701 (2004).

[60] M. B. Tsang, et al., Constraints on the density dependence of the symmetry energy, Physical Review Letters 102, 122701 (2009).

[61] T. X. Liu, et al., Isospin observables from fragment energy spectra, Physical Review C 86, 024605 (2012).

[62] W. Reisdorf, et al., Systematics of central heavy ion collisions in the 1A GeV regime, Nuclear Physics A 848, 366 (2010).

[63] Y. Wang, et al., 3H/3He ratio as a probe of the nuclear symmetry energy at sub-saturation densities, The European Physical Journal A 51, 37 (2015).

[64] G. Jhang, et al., Symmetry energy investigation with pion production from Sn+Sn systems, Physics Letters B 813, 136016 (2021).

[65] J. Estee, et al., Probing the symmetry energy with the spectral pion ratio, Physical Review Letters 126, 162701 (2021).

[66] Z. Kohley, et al., Investigation of transverse collective flow of intermediate mass fragments, Physical Review C 82, 064601 (2010).

[67] Z. Kohley, et al., Transverse collective flow and midrapidity emission of isotopically identi- fied light charged particles, Physical Review C 83, 044601 (2011).

[68] Z. Kohley, et al., Sensitivity of intermediate mass fragment flows to the symmetry energy, Physical Review C 85, 064605 (2012).

[69] M. B. Tsang, et al., Constraints on the symmetry energy and neutron skins from experiments and theory, Physical Review C 86, 015803 (2012).

[70] B.-A. Li et al., Constraining the neutron–proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density, Physics Letters B 727, 276 (2013).

[71] J. M. Lattimer et al., CONSTRAINING THE SYMMETRY PARAMETERS OF THE NU-CLEAR INTERACTION, The Astrophysical Journal 771, 51 (2013).

[72] M. Oertel, et al., Equations of state for supernovae and compact stars, Reviews of Modern Physics 89, 015007 (2017).

[73] Y. Zhang, et al., Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars, Physical Review C 101, 034303 (2020).

[74] B. Alex Brown, Neutron radii in nuclei and the neutron equation of state, Physical Review Letters 85, 5296 (2000).

[75] J. Xu, Transport approaches for the description of intermediate-energy heavy-ion collisions, Progress in Particle and Nuclear Physics 106, 312 (2019).

[76] R. Chen, et al., Single-nucleon potential decomposition of the nuclear symmetry energy, Physical Review C 85, 024305 (2012).

[77] B.-A. Li, et al., Equation of state of asymmetric nuclear matter and collisions of neutron-rich nuclei, Physical Review Letters 78, 1644 (1997).

[78] Q. Li, et al., Probing the density dependence of the symmetry potential at low and high densities, Physical Review C 72, 034613 (2005).

[79] B.-A. Li, et al., Double neutron/proton ratio of nucleon emissions in isotopic reaction systems as a robust probe of nuclear symmetry energy, Physics Letters B 634, 378 (2006).

[80] Q. Li, et al., Probing the symmetry energy and the degree of isospin equilibrium, Physical Review C 73, 051601 (2006).

[81] S. Kumar, et al., Sensitivity of neutron to proton ratio toward the high density behavior of the symmetry energy in heavy-ion collisions, Physical Review C 85, 024620 (2012).

[82] B.-A. Li, Neutron-proton differential flow as a probe of isospin-dependence of the nuclear equation of state, Physical Review Letters 85, 4221 (2000).

[83] B.-A. Li, Probing the High Density Behavior of the Nuclear Symmetry Energy with High Energy Heavy-Ion Collisions, Physical Review Letters 88, 192701 (2002).

[84] B.-A. Li, High density behaviour of nuclear symmetry energy and high energy heavy-ion collisions, Nuclear Physics A 708, 365 (2002).

[85] V. Greco, et al., Relativistic effects in the search for high density symmetry energy, Physics Letters B 562, 215 (2003).

[86] M. Cozma, Neutron–proton elliptic flow difference as a probe for the high density dependence of the symmetry energy, Physics Letters B 700, 139 (2011).

[87] L.-W. Chen, et al., Light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich nuclei, Nuclear Physics A 729, 809 (2003).

[88] Y. Zhang et al., Probing the density dependence of the symmetry potential with peripheral heavy-ion collisions, Physical Review C 71, 024604 (2005).

[89] G.-C. Yong, et al., Triton-3He relative and differential flows as probes of the nuclear sym- metry energy at supra-saturation densities, Physical Review C 80, 044608 (2009).

[90] B.-A. Li, et al., Near-threshold pion production with radioactive beams, Physical Review C 71, 014608 (2005).

[91] G. Ferini, et al., Isospin effects on subthreshold kaon production at intermediate energies, Physical Review Letters 97, 202301 (2006).

[92] G.-C. Yong, et al., Single and double u−/u+ ratios in heavy-ion reactions as probes of the high-density behavior of the nuclear symmetry energy, Physical Review C 73, 034603 (2006).

[93] Z.-G. Xiao, et al., Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions, The European Physical Journal A 50, 37 (2014).

[94] N. Ikeno, et al., Erratum: Probing neutron-proton dynamics by pions [Phys. Rev. C 93, 044612 (2016)], Physical Review C 97, 069902 (2018).

[95] G.-C. Yong, Modeling pion production in heavy-ion collisions at intermediate energies, Physical Review C 96, 044605 (2017).

[96] M. B. Tsang, et al., Pion production in rare-isotope collisions, Physical Review C 95, 044614 (2017).

[97] Q. Li, et al., S−/S+ ratio as a candidate for probing the density dependence of the symmetry potential at high nuclear densities, Physical Review C 71, 054907 (2005).

[98] W.-J. Xie, et al., Symmetry energy and pion production in the Boltzmann–Langevin ap- proach, Physics Letters B 718, 1510 (2013).

[99] J. Hong et al., Subthreshold pion production within a transport description of central Au + Au collisions, Physical Review C 90, 024605 (2014).

[100] J. Xu, et al., Energy dependence of pion in-medium effects on the u−/u+ ratio in heavy-ion collisions, Physical Review C 87, 067601 (2013).

[101] W.-M. Guo, et al., Effects of nuclear symmetry energy and in-medium NN cross section in heavy-ion collisions at beam energies below the pion production threshold, Physical Review C 90, 044605 (2014).

[102] G.-C. Yong, Cross-checking the symmetry energy at high densities, Physical Review C 93, 044610 (2016).

[103] W.-M. Guo, et al., Effects of pion potential and nuclear symmetry energy on the u−/u+ ratio in heavy-ion collisions at beam energies around the pion production threshold, Physical Review C 91, 054616 (2015).

[104] Z.-Q. Feng, et al., In-medium and isospin effects on particle production near threshold energies in heavy-ion collisions, Physical Review C 92, 044604 (2015).

[105] Z. Zhang et al., Medium effects on pion production in heavy ion collisions, Physical Review C 95, 064604 (2017).

[106] M. D. Cozma, Constraining the density dependence of the symmetry energy using the multiplicity and average pT ratios of charged pions, Physical Review C 95, 014601 (2017).

[107] B.-A. Li, Symmetry potential of the A(1232) resonance and its effects on the u−/u+ ratio in heavy-ion collisions near the pion-production threshold, Physical Review C 92, 034603 (2015).

[108] W.-M. Guo, et al., Effect of A potential on the u−/u+ ratio in heavy-ion collisions at intermediate energies, Physical Review C 92, 054619 (2015).

[109] N. Ikeno, et al., Effects of Pauli blocking on pion production in central collisions of neutron- rich nuclei, Physical Review C 101, 034607 (2020).

[110] T. Song et al., Modifications of the pion-production threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy, Physical Review C 91, 014901 (2015).

[111] B.-A. Li, et al., Effects of the kinetic symmetry energy reduced by short-range correlations in heavy-ion collisions at intermediate energies, Physical Review C 91, 044601 (2015).

[112] M. Cozma, The impact of energy conservation in transport models on the u-/u+ multiplicity ratio in heavy-ion collisions and the symmetry energy, Physics Letters B 753, 166 (2016).

[113] J. Xu, et al., Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions, Physical Review C 93, 044609 (2016).

[114] Y.-X. Zhang, et al., Comparison of heavy-ion transport simulations: Collision integral in a box, Physical Review C 97, 034625 (2018).

[115] A. Ono, et al., Comparison of heavy-ion transport simulations: Collision integral with pions and A resonances in a box, Physical Review C 100, 044617 (2019).

[116] Y. Leifels, et al., Exclusive studies of neutron and charged particle emission in collisions of 197Au +197Au at 400 MeV/nucleon, Physical Review Letters 71, 963 (1993).

[117] D. Lambrecht, et al., Energy dependence of collective flow of neutrons and protons in 197Au+197Au collisions, Zeitschrift für Physik A Hadrons and Nuclei 350, 115 (1994).

[118] Y. Wang, et al., Constraining the high-density nuclear symmetry energy with the transverse- momentum-dependent elliptic flow, Physical Review C 89, 044603 (2014).

[119] Y. Wang, et al., Study of the nuclear symmetry energy from the rapidity-dependent elliptic flow in heavy-ion collisions around 1 GeV/nucleon regime, Physics Letters B 802, 135249 (2020).

[120] Z.-Q. Feng, Nuclear in-medium effects and collective flows in heavy-ion collisions at inter- mediate energies, Physical Review C 85, 014604 (2012).

[121] Y. Wang, et al., Collective flow of light particles in Au + Au collisions at intermediate energies, Physical Review C 89, 034606 (2014).

[122] W. Reisdorf, et al., Nuclear stopping from 0.09A to 1.93A GeV and its correlation to flow, Physical Review Letters 92, 232301 (2004).

[123] L.-W. Chen, et al., Effects of momentum-dependent nuclear potential on two-nucleon cor- relation functions and light cluster production in intermediate energy heavy-ion collisions, Physical Review C 69, 054606 (2004).

[124] A. Ono, Dynamics of clusters and fragments in heavy-ion collisions, Progress in Particle and Nuclear Physics 105, 139 (2019).

[125] A. Ono, Cluster production within antisymmetrized molecular dynamics, EPJ Web of Con- ferences 122, 11001 (2016).

[126] D. D. S. Coupland, et al., Influence of transport variables on isospin transport ratios, Physical Review C 84, 054603 (2011).

[127] W. Reisdorf, et al., Central collisions of Au on Au at 150, 250 and 400 A MeV, Nuclear Physics A 612, 493 (1997).

[128] S. Hudan, et al., Characteristics of the fragments produced in central collisions of 129Xe+natSn from 32A to 50 A MeV, Physical Review C 67, 064613 (2003).

[129] B. Borderie et al., Nuclear multifragmentation and phase transition for hot nuclei, Progress in Particle and Nuclear Physics 61, 551 (2008).

[130] Y. Zhang, et al., Effect of isospin-dependent cluster recognition on the observables in heavy ion collisions, Physical Review C 85, 051602 (2012).

[131] K. Zbiri, et al., Transition from participant to spectator fragmentation in Au+Au reactions between 60A and 150A MeV, Phys. Rev. C 75, 034612 (2007).

[132] K. Ikeda, et al., The systematic structure-change into the molecule-like structures in the self-conjugate 4n nuclei, Progress of Theoretical Physics Supplement E68, 464 (1968).

[133] S. Adachi, et al., Systematic analysis of inelastic ю scattering off self-conjugate A=4n nuclei, Physical Review C 97, 014601 (2018).

[134] J. Tanaka, et al., Formation of ю clusters in dilute neutron-rich matter, Science 371, 260 (2021).

[135] A. Arcones, et al., Influence of light nuclei on neutrino-driven supernova outflows, Physical Review C 78, 015806 (2008).

[136] S. Typel, et al., Composition and thermodynamics of nuclear matter with light clusters, Physical Review C 81, 015803 (2010).

[137] S. Typel, et al., Effects of the liquid-gas phase transition and cluster formation on the symmetry energy, The European Physical Journal A 50, 17 (2014).

[138] G. Röpke, Parametrization of light nuclei quasiparticle energy shifts and composition of warm and dense nuclear matter, Nuclear Physics A 867, 66 (2011).

[139] G. Röpke, Nuclear matter equation of state including two-, three-, and four-nucleon correla- tions, Physical Review C 92, 054001 (2015).

[140] S. S. Avancini, et al., Light clusters and pasta phases in warm and dense nuclear matter, Physical Review C 95, 045804 (2017).

[141] P. Danielewicz et al., Production of deuterons and pions in a transport model of energetic heavy-ion reactions, Nuclear Physics A 533, 712 (1991).

[142] P. Danielewicz et al., Blast of light fragments from central heavy-ion collisions, Physical Review C 46, 2002 (1992).

[143] G. Tian, et al., Cluster correlation and fragment emission in 12C+12C at 95 MeV/nucleon, Physical Review C 97, 034610 (2018).

[144] J. I. Kapusta, Mechanisms for deuteron production in relativistic nuclear collisions, Physical Review C: Nuclear Physics 21, 1301 (1980).

[145] E. Santini, et al., Fragment formation in central heavy ion collisions at relativistic energies, Nuclear Physics A 756, 468 (2005).

[146] B. Hong, et al., Proton and deuteron rapidity distributions and nuclear stopping in 96Ru(96Zr)+96Ru(96Zr) collisions at 400AMeV, Physical Review C 66, 034901 (2002).

[147] T. Gaitanos, et al., Stopping and isospin equilibration in heavy ion collisions, Physics Letters B 595, 209 (2004).

[148] Y. Zhang, et al., In-medium NN cross sections determined from the nuclear stopping and collective flow in heavy-ion collisions at intermediate energies, Physical Review C 75, 034615 (2007).

[149] S. Kumar, et al., Effect of the symmetry energy on nuclear stopping and its relation to the production of light charged fragments, Physical Review C 81, 014601 (2010).

[150] F. Rami, et al., Isospin tracing: A probe of nonequilibrium in central heavy-ion collisions, Physical Review Letters 84, 1120 (2000).

[151] P. Li, et al., Effects of the in-medium nucleon-nucleon cross section on collective flow and nuclear stopping in heavy-ion collisions in the Fermi-energy domain, Physical Review C 97, 044620 (2018).

[152] A. Hombach, et al., Isospin equilibration in relativistic heavy-ion collisions, The European Physical Journal A - Hadrons and Nuclei 5, 77 (1999).

[153] J. Su, et al., Effects of symmetry energy and effective k-mass splitting on central 96Ru(96Zr)+96Zr(96Ru) collisions at 50 to 400 MeV/nucleon, Physical Review C 96, 024601 (2017).

[154] Z. Chajecki, et al., Scaling properties of light-cluster production, arXiv:1402.5216 [nucl-ex] (2014), arXiv:1402.5216 [nucl-ex] .

[155] Y. Yano, The RIKEN RI beam factory project: A status report, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 261, 1009 (2007).

[156] H. Okuno, et al., Progress of RIBF accelerators, Progress of Theoretical and Experimental Physics 2012, 03C002 (2012).

[157] T. Motobayashi et al., Research with fast radioactive isotope beams at RIKEN, Progress of Theoretical and Experimental Physics 2012, 03C001 (2012).

[158] T. Nakamura, et al., Exotic nuclei explored at in-flight separators, Progress in Particle and Nuclear Physics 97, 53 (2017).

[159] H. Sakurai, Nuclear physics with RI Beam Factory, Frontiers of Physics 13, 132111 (2018).

[160] Y. Higurashi, et al., Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz, Review of Scientific Instruments 83, 02A308 (2012).

[161] Y. Higurashi, et al., Recent development of RIKEN 28 GHz superconducting electron cyclotron resonance ion source, Review of Scientific Instruments 85, 02A953 (2014).

[162] K. Suda, et al., Design and construction of drift tube linac cavities for RIKEN RI Beam Factory, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 722, 55 (2013).

[163] H. Okuno, et al., Present status of and recent developments at RIKEN RI beam factory, Journal of Physics: Conference Series 1401, 012005 (2020).

[164] H. Imao, et al., Charge stripping of 238U ion beam by helium gas stripper, Physical Review Special Topics - Accelerators and Beams 15, 123501 (2012).

[165] H. Hasebe, et al., Development of a rotating graphite carbon disk stripper, AIP Conference Proceedings 1962, 030004 (2018).

[166] T. Kubo, Recent progress of in-flight separators and rare isotope beam production, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 376, 102 (2016).

[167] Status of the calculated production cross section as well as measurements of that at RIBF are provided here., https://www.nishina.riken.jp/ribf/BigRIPS/intensity.html.

[168] J. Benlliure, et al., Production of medium-mass neutron-rich nuclei in reactions induced by 136Xe projectiles at 1 A GeV on a beryllium target, Physical Review C: Nuclear Physics 78, 054605 (2008).

[169] B. Blank, et al., New neutron-deficient isotopes from 78Kr fragmentation, Physical Review C: Nuclear Physics 93, 061301 (2016).

[170] K. Sümmerer, Improved empirical parametrization of fragmentation cross sections, Physical Review C 86, 014601 (2012).

[171] M. Bernas, et al., Discovery and cross-section measurement of 58 new fission products in projectile-fission of 750 · A MeV 238U, Physics Letters B 415, 111 (1997).

[172] J. Kurcewicz, et al., Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS, Physics Letters B 717, 371 (2012).

[173] Y. Shimizu, et al., Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345 MeV/nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns, Journal of the Physical Society of Japan 87, 014203 (2018).

[174] N. Fukuda, et al., Identification of new neutron-rich isotopes in the rare-earth region produced by 345 MeV/nucleon 238U, Journal of the Physical Society of Japan 87, 014202 (2018).

[175] T. Kubo, et al., BigRIPS separator and ZeroDegree spectrometer at RIKEN RI Beam Factory, Progress of Theoretical and Experimental Physics 2012, 03C003 (2012).

[176] J. Dufour, et al., Projectile fragments isotopic separation: Application to the lise spectrometer at GANIL, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 248, 267 (1986).

[177] N. Fukuda, et al., Identification and separation of radioactive isotope beams by the BigRIPS separator at the RIKEN RI Beam Factory, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 317, 323 (2013).

[178] H. Kumagai, et al., Delay-line PPAC for high-energy light ions, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Asso- ciated Equipment 470, 562 (2001).

[179] H. Kumagai, et al., Development of parallel plate avalanche counter (PPAC) for BigRIPS fragment separator, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 317, 717 (2013).

[180] K. Kimura, et al., High-rate particle identification of high-energy heavy ions using a tilted electrode gas ionization chamber, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 538, 608 (2005).

[181] H. Sato, et al., Superconducting dipole magnet for SAMURAI spectrometer, IEEE Transac- tions on Applied Superconductivity 23, 4500308 (2013).

[182] H. Otsu, et al., SAMURAI in its operation phase for RIBF users, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 376, 175 (2016).

[183] R. Shane, et al., SuRIT: A time-projection chamber for symmetry-energy studies, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, De- tectors and Associated Equipment 784, 513 (2015).

[184] J. E. Barney, Charged Pion Emission from 112Sn+124Sn and 124Sn+112Sn Reactions with the SuRIT Time Projection Chamber, Ph.D. thesis, Michigan State University (2019).

[185] J. Barney, et al., The SuRIT time projection chamber, Review of Scientific Instruments 92, 063302 (2021).

[186] R. Veenhof, Garfield, recent developments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 419, 726 (1998).

[187] S. Tangwancharoen, et al., A gating grid driver for time projection chambers, Nuclear Instru- ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 853, 44 (2017).

[188] E. Pollacco, et al., GET: A generic electronics system for TPCs and nuclear physics instru- mentation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 887, 81 (2018).

[189] T. Isobe, et al., Application of the Generic Electronics for Time Projection Chamber (GET) readout system for heavy Radioactive isotope collision experiments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 899, 43 (2018).

[190] X. Grave, et al., in 14th IEEE-NPSS Real Time Conference, 2005. (2005) pp. 5 pp.–.

[191] S. Callier, et al., EASIROC, an easy & versatile ReadOut device for SiPM, Physics Procedia 37, 1569 (2012).

[192] S. Agostinelli, et al., Geant4—a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip- ment 506, 250 (2003).

[193] M. Bleicher, et al., Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model, Journal of Physics G: Nuclear and Particle Physics 25, 1859 (1999).

[194] P. Lasko, et al., KATANA – A charge-sensitive triggering system for the SuRIT experiment, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrome- ters, Detectors and Associated Equipment 856, 92 (2017).

[195] Y. Zhang, et al., The Veto Collimator for the SuRIT-TPC, RIKEN Accelerator Progress Report 50, 170 (2017).

[196] T. Kobayashi, et al., SAMURAI spectrometer for RI beam experiments, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 317, 294 (2013).

[197] I. Gašparić, et al., NeuLAND demonstrator performance in EOS experiments, RIKEN Accelerator Progress Report 50, 176 (2017).

[198] H. Baba, et al., New data acquisition system for the RIKEN radioactive isotope beam factory, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 616, 65 (2010).

[199] H. Baba, et al., Common trigger firmware for GTO, RIKEN Accelerator Progress Report 47, 235 (2014).

[200] M. Kaneko, The ANAROOT-based software codes for analyzing RI beam-induced data of the BigRIPS detectors, https://github.com/SpiRIT-Collaboration/BeamAnalysis_S22.

[201] K. Makino et al., COSY INFINITY Version 9, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 558, 346 (2006).

[202] O. Tarasov et al., LISE++: Radioactive beam production with in-flight separators, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, 4657 (2008).

[203] J. W. Lee, et al., Charged particle track reconstruction with SuRIT time projection chamber, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrome- ters, Detectors and Associated Equipment 965, 163840 (2020).

[204] G. Jhang, et al., Beam commissioning of the SuRIT time projection chamber, Journal of the Korean Physical Society 69, 144 (2016).

[205] G. Jhang, Performance of the SuRIT TPC for the Nuclear Physics Experiment at RIBF, Ph.D. thesis, Korea University (2016).

[206] J. Estee, et al., Extending the dynamic range of electronics in a Time Projection Chamber, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrome- ters, Detectors and Associated Equipment 944, 162509 (2019).

[207] C. Y. Tsang, et al., Space charge effects in the SuRIT time projection chamber, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, De- tectors and Associated Equipment 959, 163477 (2020).

[208] R. Brun et al., ROOT — An object oriented data analysis framework, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 389, 81 (1997).

[209] R. Frühwirth et al., Robust circle reconstruction with the Riemann fit, Journal of Physics: Conference Series 1085, 042004 (2018).

[210] J. Rauch et al., GENFIT — a generic track-fitting toolkit, Journal of Physics: Conference Series 608, 012042 (2015).

[211] W. Waltenberger, et al., Adaptive vertex fitting, Journal of Physics G: Nuclear and Particle Physics 34, N343 (2007).

[212] W. Waltenberger, RAVE—A detector-independent toolkit to reconstruct vertices, IEEE Transactions on Nuclear Science 58, 434 (2011).

[213] Particle Data Group, et al., Review of Particle Physics, Progress of Theoretical and Experi- mental Physics 2020, 10.1093/ptep/ptaa104 (2020).

[214] C. Cavata, et al., Determination of the impact parameter in relativistic nucleus-nucleus collisions, Physical Review C 42, 1760 (1990).

[215] W. D. Myers, Geometric properties of leptodermous distributions with applications to nuclei, Nuclear Physics A 204, 465 (1973).

[216] F. Cerutti, et al., A semiclassical formula for the reaction cross-section of heavy ions, The European Physical Journal A - Hadrons and Nuclei 25, 413 (2005).

[217] R. Kumar, et al., Parameterization scheme for determining the reaction cross sections at intermediate beam energies for normal and exotic nuclei, Nuclear Physics A 849, 182 (2011).

[218] M. Anderson, et al., The STAR time projection chamber: A unique tool for studying high multiplicity events at RHIC, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 499, 659 (2003).

[219] E. Chabanat, et al., A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities, Nuclear Physics A 635, 231 (1998).

[220] A. Ono, et al., Nucleon flow and fragment flow in heavy ion reactions, Physical Review C 48, 2946 (1993).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る