リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Antioxidants and Therapeutic Targets in Ovarian Clear Cell Carcinoma.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Antioxidants and Therapeutic Targets in Ovarian Clear Cell Carcinoma.

AMANO Tsukuru 20613467 0000-0003-2919-6337 MURAKAMI Atsushi MURAKAMI Takashi 20240666 0000-0002-0250-0856 CHANO Tokuhiro 40346028 0000-0002-9959-1183 滋賀医科大学

2021.01.28

概要

Ovarian clear cell carcinomas (OCCCs) are resistant to conventional anti-cancer drugs; moreover, the prognoses of advanced or recurrent patients are extremely poor. OCCCs often arise from endometriosis associated with strong oxidative stress. Of note, the stress involved in OCCCs can be divided into the following two categories: (a) carcinogenesis from endometriosis to OCCC and (b) factors related to treatment after carcinogenesis. Antioxidants can reduce the risk of OCCC formation by quenching reactive oxygen species (ROS); however, the oxidant stress-tolerant properties assist in the survival of OCCC cells when the malignant transformation has already occurred. Moreover, the acquisition of oxidative stress resistance is also involved in the cancer stemness of OCCC. This review summarizes the recent advances in the process and prevention of carcinogenesis, the characteristic nature of tumors, and the treatment of post-refractory OCCCs, which are highly linked to oxidative stress. Although therapeutic approaches should still be improved against OCCCs, multi-combinatorial treatments including nucleic acid-based drugs directed to the transcriptional profile of each OCCC are expected to improve the outcomes of patients.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Available online: http://gco.iarc.fr/today/home (accessed on 15 December 2020).

Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2018

.html (accessed on 15 December 2020).

Available online: https://ganjoho.jp/reg_stat/statistics/stat/short_pred.html (accessed on 15 December 2020).

Yamagami, W.; Nagase, S.; Takahashi, F.; Ino, K.; Hachisuga, T.; Aoki, D.; Katabuchi, H. Clinical statistics of gynecologic cancers

in Japan. J. Gynecol. Oncol. 2017, 28. [CrossRef] [PubMed]

Itamochi, H.; Kigawa, J.; Terakawa, N. Mechanisms of chemoresistance and poor prognosis in ovarian clear cell carcinoma. Cancer

Sci. 2008, 99, 653–658. [CrossRef] [PubMed]

Shih, I.-M.; Kurman, R.J. Ovarian Tumorigenesis. Am. J. Pathol. 2004, 164, 1511–1518. [CrossRef]

Köbel, M.; Reuss, A.; Du Bois, A.; Kommoss, S.; Kommoss, F.; Gao, D.; Kalloger, S.E.; Huntsman, D.G.; Gilks, C.B. The biological

and clinical value of p53 expression in pelvic high-grade serous carcinomas. J. Pathol. 2010, 222, 191–198. [CrossRef] [PubMed]

Kaldawy, A.; Segev, Y.; Lavie, O.; Auslender, R.; Sopik, V.; Narod, S.A. Low-grade serous ovarian cancer: A review. Gynecol. Oncol.

2016, 143, 433–438. [CrossRef] [PubMed]

Seidman, J.D.; Kurman, R.J.; Ronnett, B.M. Primary and Metastatic Mucinous Adenocarcinomas in the Ovaries. Am. J. Surg.

Pathol. 2003, 27, 985–993. [CrossRef] [PubMed]

Köbel, M.; Kalloger, S.E.; Boyd, N.; McKinney, S.; Mehl, E.; Palmer, C.; Leung, S.; Bowen, N.J.; Ionescu, D.N.; Rajput, A.; et al.

Ovarian Carcinoma Subtypes Are Different Diseases: Implications for Biomarker Studies. PLoS Med. 2008, 5, e232. [CrossRef]

Antioxidants 2021, 10, 187

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

11 of 15

Bouchard-Fortier, G.; Panzarella, T.; Rosen, B.; Chapman, W.; Gien, L.T. Endometrioid Carcinoma of the Ovary: Outcomes

Compared to Serous Carcinoma After 10 Years of Follow-Up. J. Obstet. Gynaecol. Can. 2017, 39, 34–41. [CrossRef]

Kuo, K.-T.; Mao, T.-L.; Jones, S.; Veras, E.; Ayhan, A.; Wang, T.-L.; Glas, R.; Slamon, D.; Velculescu, V.E.; Kuman, R.J.; et al.

Frequent Activating Mutations of PIK3CA in Ovarian Clear Cell Carcinoma. Am. J. Pathol. 2009, 174, 1597–1601. [CrossRef]

Jones, S.; Wang, T.-L.; Shih, I.-M.; Mao, T.-L.; Nakayama, K.; Roden, R.; Glas, R.; Slamon, D.; Diaz, L.A.; Vogelstein, B.; et al.

Frequent Mutations of Chromatin Remodeling Gene ARID1A in Ovarian Clear Cell Carcinoma. Science 2010, 330, 228–231.

[CrossRef]

Tsuchiya, A.; Sakamoto, M.; Yasuda, J.; Chuma, M.; Ohta, T.; Ohki, M.; Yasugi, T.; Taketani, Y.; Hirohashi, S. Expression Profiling

in Ovarian Clear Cell Carcinoma. Am. J. Pathol. 2003, 163, 2503–2512. [CrossRef]

Zondervan, K.; Becker, C.M.; Missmer, S.A. Endometriosis. N. Engl. J. Med. 2020, 382, 1244–1256. [CrossRef] [PubMed]

Pearce, C.L.; Templeman, C.; Rossing, M.A.; Lee, A.; Near, A.M.; Webb, P.M.; Nagle, C.M.; Doherty, J.A.; Cushing-Haugen, K.L.;

Wicklund, K.G.; et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: Apooled analysis of

case–control studies. Lancet Oncol. 2012, 13, 385–394. [CrossRef]

Nezhat, F.; Datta, M.S.; Hanson, V.; Pejovic, T.; Nezhat, C.; Nezhat, C. The relationship of endometriosis and ovarian malignancy:

A review. Fertil. Steril. 2008, 90, 1559–1570. [CrossRef] [PubMed]

Landskron, G.; De La Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic Inflammation and Cytokines in the Tumor

Microenvironment. J. Immunol. Res. 2014, 2014, 149185. [CrossRef]

Balkwill, F.R.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [CrossRef]

Worley, J.M.J.; Welch, W.R.; Berkowitz, R.S.; Ng, S.-W. Endometriosis-Associated Ovarian Cancer: A Review of Pathogenesis. Int.

J. Mol. Sci. 2013, 14, 5367–5379. [CrossRef]

Bulun, S.E. Endometriosis. N. Engl. J. Med. 2009, 360, 268–279. [CrossRef]

Yamaguchi, K.; Mandai, M.; Oura, T.; Matsumura, N.; Hamanishi, J.; Baba, T.; Matsui, S.; Murphy, S.K.; Konishi, I. Identification

of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes. Oncogene

2010, 29, 1741–1752. [CrossRef]

Toyokuni, S. Role of iron in carcinogenesis: Cancer as a ferrotoxic disease. Cancer Sci. 2009, 100, 9–16. [CrossRef]

Yamaguchi, K.; Mandai, M.; Toyokuni, S.; Hamanishi, J.; Higuchi, T.; Takakura, K.; Fujii, S. Contents of Endometriotic Cysts,

Especially the High Concentration of Free Iron, Are a Possible Cause of Carcinogenesis in the Cysts through the Iron-Induced

Persistent Oxidative Stress. Clin. Cancer Res. 2008, 14, 32–40. [CrossRef] [PubMed]

Li, J.L.; Okada, S.; Hamazaki, S.; Ebina, Y.; Midorikawa, O. Subacute nephrotoxicity and in-duction of renal cell carcinoma in

mice treated with ferric nitrilotriacetate. Cancer Res. 1987, 47, 1867–1869. [PubMed]

Liu, M.; Okada, S. Induction of free radicals and tumors in the kidneys of Wistar rats by ferric ethylenediamine-N,N0 -diacetate.

Carcinogenesis 1994, 15, 2817–2821. [CrossRef] [PubMed]

Munksgaard, P.S.; Blaakaer, J. The association between endometriosis and ovarian cancer: A review of histological, genetic and

molecular alterations. Gynecol. Oncol. 2012, 124, 164–169. [CrossRef] [PubMed]

Melin, A.-S.; Lundholm, C.; Malki, N.; Swahn, M.-L.; Sparén, P.; Bergqvist, A. Hormonal and surgical treatments for endometriosis

and risk of epithelial ovarian cancer. Acta Obstet. Gynecol. Scand. 2013, 92, 546–554. [CrossRef] [PubMed]

Yoshino, O.; Minamisaka, T.; Ono, Y.; Tsuda, S.; Samejima, A.; Shima, T.; Nakashima, A.; Koga, K.; Osuga, Y.; Saito, S. Three

cases of clear-cell adenocarcinoma arising from endometrioma during hormonal treatments. J. Obstet. Gynaecol. Res. 2018, 44,

1850–1858. [CrossRef]

Modugno, F.; Ness, R.B.; Allen, G.O.; Schildkraut, J.M.; Davis, F.G.; Goodman, M.T. Oral contraceptive use, reproductive history,

and risk of epithelial ovarian cancer in women with and without endometriosis. Am. J. Obstet. Gynecol. 2004, 191, 733–740.

[CrossRef]

Collaborative Group on Epidemiological Studies of Ovarian Cancer Ovarian cancer and oral contraceptives: Collaborative

reanalysis of data from 45 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls. Lancet 2008,

371, 303–314. [CrossRef]

Nishida, Y.; Yamashita, E.; Miki, W. Quenching activities of common hydrophilic and lip-ophilic antioxidants against singlet

oxygen using chemiluminescence detection System. Carotenoid Sci. 2007, 11, 16–20.

Martin, H.D.; Ruck, C.; Schmidt, M.; Sell, S.; Beutner, S.; Mayer, B.; Walsh, R. Chemistry of carotenoid oxidation and free radical

reactions. Pure Appl. Chem. 1999, 71, 2253–2262. [CrossRef]

Kuroki, T.; Ikeda, S.; Okada, T.; Maoka, T.; Kitamura, A.; Sugimoto, M.; Kume, S. Astaxanthin ameliorates heat stress-induced

impairment of blastocyst development In Vitro: Astaxanthin colocalization with and action on mitochondria. J. Assist. Reprod.

Genet. 2013, 30, 623–631. [CrossRef] [PubMed]

Park, J.S.; Mathison, B.D.; Hayek, M.G.; Zhang, J.; Reinhart, G.A.; Chew, B.P. Astaxanthin modulates age-associated mitochondrial

dysfunction in healthy dogs1. J. Anim. Sci. 2013, 91, 268–275. [CrossRef] [PubMed]

Ames, B.N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 1983, 221, 1256–1264.

[CrossRef] [PubMed]

Dušinská, M.; Kažimírová, A.; Baranˇcoková, M.; Beno,

ˇ M.; Smolkova, B.; Horská, A.; Rašlová, K.; Wsólová, L.; Collins, A.

Nutritional supplementation with antioxidants decreases chromosomal damage in humans. Mutagenesis 2003, 18, 371–376.

[CrossRef]

Antioxidants 2021, 10, 187

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

12 of 15

Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic inflammation and oxidative stress in human

carcinogenesis. Int. J. Cancer 2007, 121, 2381–2386. [CrossRef]

Choi, H.D.; Youn, Y.K.; Shin, W.G. Positive Effects of Astaxanthin on Lipid Profiles and Oxidative Stress in Overweight Subjects.

Plant Foods Hum. Nutr. 2011, 66, 363–369. [CrossRef]

Wolf, A.M.; Asoh, S.; Hiranuma, H.; Ohsawa, I.; Iio, K.; Satou, A.; Ishikura, M.; Ohta, S. Astaxanthin protects mitochondrial redox

state and functional integrity against oxidative stress. J. Nutr. Biochem. 2010, 21, 381–389. [CrossRef]

Aoi, W.; Naito, Y.; Takanami, Y.; Ishii, T.; Kawai, Y.; Akagiri, S.; Kato, Y.; Osawa, T.; Yoshikawa, T. Astaxanthin improves muscle

lipid metabolism in exercise via inhibitory effect of oxidative CPT I modification. Biochem. Biophys. Res. Commun. 2008, 366,

892–897. [CrossRef]

Park, J.S.; Chyun, J.H.; Kim, Y.K.; Line, L.L.; Chew, B.P. Astaxanthin decreased oxidative stress and inflammation and enhanced

immune response in humans. Nutr. Metab. 2010, 7, 18. [CrossRef]

Kavitha, K.; Kowshik, J.; Kishore, T.K.K.; Baba, A.B.; Nagini, S. Astaxanthin inhibits NF-κB and Wnt/β-catenin signaling

pathways via inactivation of Erk/MAPK and PI3K/Akt to induce intrinsic apoptosis in a hamster model of oral cancer. Biochim.

Biophys. Acta (BBA) Gen. Subj. 2013, 1830, 4433–4444. [CrossRef]

Kowshik, J.; Baba, A.B.; Giri, H.; Reddy, G.D.; Dixit, M.; Nagini, S. Astaxanthin Inhibits JAK/STAT-3 Signaling to Abrogate Cell

Proliferation, Invasion and Angiogenesis in a Hamster Model of Oral Cancer. PLoS ONE 2014, 9, e109114. [CrossRef] [PubMed]

Palozza, P.; Torelli, C.; Boninsegna, A.; Simone, R.; Catalano, A.; Mele, M.C.; Picci, N. Growth-inhibitory effects of the astaxanthinrich alga Haematococcus pluvialis in human colon cancer cells. Cancer Lett. 2009, 283, 108–117. [CrossRef] [PubMed]

Tanaka, T.; Makita, H.; Ohnishi, M.; Mori, H.; Satoh, K.; Hara, A. Chemoprevention of rat oral carcinogenesis by naturally

occurring xanthophylls, astaxanthin and canthaxanthin. Cancer Res. 1995, 55, 4059–4064. [PubMed]

Brito, A.; Ribeiro, M.; Abrantes, A.M.; Pires, A.; Teixo, R.; Tralhão, J.; Botelho, M.F. Quercetin in Cancer Treatment, Alone or in

Combination with Conventional Therapeutics? Curr. Med. Chem. 2015, 22, 3025–3039. [CrossRef]

Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M.; Choudhary, B.; Raghavan, S.C. Quercetin, a

Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway

of Apoptosis. Sci. Rep. 2016, 6, 24049. [CrossRef]

Satyan, K.; Swamy, N.; Dizon, D.S.; Singh, R.; Granai, C.O.; Brard, L. Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian

cancer cells by inducing apoptosis: Role of caspase and MAPK activation. Gynecol. Oncol. 2006, 103, 261–270. [CrossRef]

Wattenberg, L.W. Inhibitory effects of benzyl isothiocyanate administered shortly before diethylnitrosamine or benzo[a]pyrene

on pulmonary and forestomach neoplasia in A/J mice. Carcinogenesis 1987, 8, 1971–1973. [CrossRef]

Long, Y.; Fei, H.; Xu, S.; Wen, J.; Ye, L.; Su, Z. Association about dietary vitamin C intake on the risk of ovarian cancer: A

meta-analysis. Biosci. Rep. 2020, 40. [CrossRef]

L’Espérance, K.; Datta, G.D.; Qureshi, S.; Koushik, A. Vitamin D Exposure and Ovarian Cancer Risk and Prognosis. Int. J. Environ.

Res. Public Health 2020, 17, 1168. [CrossRef]

Leng, Y.; Zhou, H.; Meng, F.; Tian, T.; Xu, J.; Yan, F. Association of vitamin E on the risk of ovarian cancer: A meta-analysis. Biosci.

Rep. 2019, 39. [CrossRef]

Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The Effect of Vitamin E and Beta Carotene on the Incidence of

Lung Cancer and Other Cancers in Male Smokers. N. Engl. J. Med. 1994, 330, 1029–1035. [CrossRef]

Wang, Q.; He, C. Dietary vitamin A intake and the risk of ovarian cancer: A meta-analysis. Biosci. Rep. 2020, 40, 40. [CrossRef]

[PubMed]

Hua, X.; Yu, L.; You, R.; Yang, Y.; Liao, J.; Chen, D.; Yu, L. Association among Dietary Flavonoids, Flavonoid Subclasses and

Ovarian Cancer Risk: A Meta-Analysis. PLoS ONE 2016, 11, e0151134. [CrossRef] [PubMed]

Chang, E.T.; Lee, V.S.; Canchola, A.J.; Clarke, C.A.; Purdie, D.M.; Reynolds, P.; Anton-Culver, H.; Bernstein, L.; Deapen, D.; Peel,

D.; et al. Diet and Risk of Ovarian Cancer in the California Teachers Study Cohort. Am. J. Epidemiol. 2007, 165, 802–813. [CrossRef]

Warburg, O. On the Origin of Cancer Cells. Science 1956, 123, 309–314. [CrossRef] [PubMed]

Kato, N.; Tamura, G.; Motoyama, T. Hypomethylation of hepatocyte nuclear factor-1beta (HNF-1beta) CpG island in clear cell

carcinoma of the ovary. Virchows Archiv. 2008, 452, 175–180. [CrossRef]

Zhu, J.-N.; Jiang, L.; Jiang, J.-H.; Yang, X.; Li, X.-Y.; Zeng, J.-X.; Shi, R.-Y.; Shi, Y.; Pan, X.-R.; Han, Z.-P.; et al. Hepatocyte nuclear

factor-1beta enhances the stemness of hepatocellular carcinoma cells through activation of the Notch pathway. Sci. Rep. 2017, 7,

4793. [CrossRef]

Sugiyama, T.; Kamura, T.; Kigawa, J.; Terakawa, N.; Kikuchi, Y.; Kita, T.; Suzuki, M.; Sato, I.; Taguchi, K. Clinical characteristics of

clear cell carcinoma of the ovary: A distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy.

Cancer 2000, 88, 2584–2589. [CrossRef]

Goff, B.A.; De La Cuesta, R.S.; Muntz, H.G.; Fleischhacker, D.; Ek, M.; Rice, L.W.; Nikrui, N.; Tamimi, H.K.; Cain, J.M.; Greer,

B.E.; et al. Clear Cell Carcinoma of the Ovary: A Distinct Histologic Type with Poor Prognosis and Resistance to Platinum-Based

Chemotherapy in Stage III Disease. Gynecol. Oncol. 1996, 60, 412–417. [CrossRef]

Senkel, S.; Lucas, B.; Klein-Hitpass, L.; Ryffel, G.U. Identification of target genes of the transcription factor HNF1β and HNF1α in

a human embryonic kidney cell line. Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 2005, 1731, 179–190. [CrossRef]

Antioxidants 2021, 10, 187

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

13 of 15

Okamoto, T.; Mandai, M.; Matsumura, N.; Yamaguchi, K.; Kondoh, H.; Amano, Y.; Baba, T.; Hamanishi, J.; Abiko, K.; Kosaka, K.;

et al. Hepatocyte nuclear factor-1β (HNF-1β) promotes glucose uptake and glycolytic activity in ovarian clear cell carcinoma.

Mol. Carcinog. 2015, 54, 35–49. [CrossRef] [PubMed]

Liu, P.; Khurana, A.; Rattan, R.; He, X.; Kalloger, S.; Dowdy, S.; Gilks, B.; Shridhar, V. Regulation of HSulf-1 Expression by Variant

Hepatic Nuclear Factor 1 in Ovarian Cancer. Cancer Res. 2009, 69, 4843–4850. [CrossRef] [PubMed]

Chen, C.; Zhou, Y.; Hu, C.; Wang, Y.; Yan, Z.; Li, Z.; Wu, R. Mitochondria and oxidative stress in ovarian endometriosis. Free Radic.

Biol. Med. 2019, 136, 22–34. [CrossRef] [PubMed]

Hemachandra, L.P.M.P.; Shin, D.-H.; Dier, U.; Iuliano, J.N.; Engelberth, S.A.; Uusitalo, L.M.; Murphy, S.K.; Hempel, N. Mitochondrial Superoxide Dismutase Has a Protumorigenic Role in Ovarian Clear Cell Carcinoma. Cancer Res. 2015, 75, 4973–4984.

[CrossRef] [PubMed]

Amano, T.; Chano, T.; Isono, T.; Kimura, F.; Kushima, R.; Murakami, T. Abundance of mitochondrial superoxide dismutase is a

negative predictive biomarker for endometriosis-associated ovarian cancers. World J. Surg. Oncol. 2019, 17, 1–7. [CrossRef]

Mizuno, T.; Suzuki, N.; Makino, H.; Furui, T.; Morii, E.; Aoki, H.; Kunisada, T.; Yano, M.; Kuji, S.; Hirashima, Y.; et al. Cancer stemlike cells of ovarian clear cell carcinoma are enriched in the ALDH-high population associated with an accelerated scavenging

system in reactive oxygen species. Gynecol. Oncol. 2015, 137, 299–305. [CrossRef]

Visvader, J.E.; Lindeman, G.J. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nat. Rev.

Cancer 2008, 8, 755–768. [CrossRef]

Chano, T.; Kita, H.; Avnet, S.; Lemma, S.; Baldini, N. Prominent role of RAB39A-RXRB axis in cancer development and stemness.

Oncotarget 2018, 9, 9852–9866. [CrossRef]

Metzler, M.A.; Sandell, L.L. Enzymatic Metabolism of Vitamin A in Developing Vertebrate Embryos. Nutrients 2016, 8, 812.

[CrossRef]

Shannon, S.R.; Moise, A.R.; Trainor, P. New insights and changing paradigms in the regulation of vitamin A metabolism in

development. Wiley Interdiscip. Rev. Dev. Biol. 2017, 6, e264. [CrossRef]

Obrochta, K.M.; Krois, C.R.; Campos, B.; Napoli, J.L.; Duan, X.-L.; Liu, N.-N.; Yang, Y.-T.; Li, H.-H.; Li, M.; Dou, S.-X.; et al. Insulin

Regulates Retinol Dehydrogenase Expression and All-trans-retinoic Acid Biosynthesis through FoxO1. J. Biol. Chem. 2015, 290,

7259–7268. [CrossRef] [PubMed]

Felix, E.L.; Loyd, B.; Cohen, M.H. Inhibition of the growth and development of a transplantable murine melanoma by vitamin A.

Science 1975, 189, 886–888. [CrossRef] [PubMed]

Dillehay, D.L.; Shealy, Y.F.; Lamon, E.W. Inhibition of Moloney murine lymphoma and sarcoma growth in vivo by dietary

retinoids. Cancer Res. 1989, 49, 44–50. [PubMed]

Aebi, S.; Kröning, R.; Cenni, B.; Sharma, A.; Fink, D.; Los, G.; Weisman, R.; Howell, S.B.; Christen, R.D. all-trans retinoic acid

enhances cisplatin-induced apoptosis in human ovarian adenocarcinoma and in squamous head and neck cancer cells. Clin.

Cancer Res. 1997, 3, 2033–2038.

Schug, T.T.; Berry, D.C.; Shaw, N.S.; Travis, S.N.; Noy, N. Opposing Effects of Retinoic Acid on Cell Growth Result from Alternate

Activation of Two Different Nuclear Receptors. Cell 2007, 129, 723–733. [CrossRef]

Available online: https://www.proteinatlas.org/ENSG00000164687-FABP5/pathology (accessed on 15 December 2020).

Guan, F.; Wang, L.; Hao, S.; Wu, Z.; Bai, J.; Kang, Z.; Zhou, Q.; Chang, H.; Yin, H.; Li, D.; et al. Retinol dehydrogenase-10 promotes

development and progression of human glioma via the TWEAK-NF-κB axis. Oncotarget 2017, 8, 105262–105275. [CrossRef]

Fujimura, M.; Katsumata, N.; Tsuda, H.; Uchi, N.; Miyazaki, S.; Hidaka, T.; Sakai, M.; Saito, S. HER2 Is Frequently Over-expressed

in Ovarian Clear Cell Adenocarcinoma: Possible Novel Treatment Modality Using Recombinant Monoclonal Antibody against

HER2, Trastuzumab. Jpn. J. Cancer Res. 2002, 93, 1250–1257. [CrossRef]

Kim, H.-J.; Yoon, A.; Ryu, J.-Y.; Cho, Y.-J.; Choi, J.-J.; Song, S.Y.; Bang, H.; Lee, J.S.; Cho, W.C.; Choi, C.H.; et al. c-MET as a

Potential Therapeutic Target in Ovarian Clear Cell Carcinoma. Sci. Rep. 2016, 6, 38502. [CrossRef]

Wakinoue, S.; Chano, T.; Amano, T.; Isono, T.; Kimura, F.; Kushima, R.; Murakami, T. ADP-ribosylation factor-like 4C predicts

worse prognosis in endometriosis-associated ovarian cancers. Cancer Biomark. 2019, 24, 223–229. [CrossRef]

Konstantinopoulos, P.A.; Brady, W.E.; Farley, J.H.; Armstrong, A.; Uyar, D.; Gershenson, D. Phase II study of single-agent

cabozantinib in patients with recurrent clear cell ovarian, primary peritoneal or fallopian tube cancer (NRG-GY001). Gynecol.

Oncol. 2018, 150, 9–13. [CrossRef]

Farley, J.H.; Brady, W.E.; Fujiwara, K.; Nomura, H.; Yunokawa, M.; Tokunaga, H.; Saitou, M.; Gershenson, D.M. A phase II

evaluation of temsirolimus in combination with carboplatin and paclitaxel followed by temsirolimus consolidation as first-line

therapy in the treatment of stage III-IV clear cell carcinoma of the ovary. J. Clin. Oncol. 2016, 34, 5531. [CrossRef]

DeVorkin, L.; Hattersley, M.; Kim, P.; Ries, J.; Spowart, J.; Anglesio, M.S.; Levi, S.M.; Huntsman, D.G.; Amaravadi, R.K.; Winkler,

J.D.; et al. Autophagy Inhibition Enhances Sunitinib Efficacy in Clear Cell Ovarian Carcinoma. Mol. Cancer Res. 2017, 15, 250–258.

[CrossRef] [PubMed]

Bitler, B.G.; Aird, K.M.; Garipov, A.; Li, H.; Amatangelo, M.; Kossenkov, A.V.; Schultz, D.C.; Liu, Q.; Shih, I.-M.; Conejo-Garcia,

J.R.; et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat. Med. 2015, 21,

231–238. [CrossRef] [PubMed]

Antioxidants 2021, 10, 187

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

14 of 15

Berns, K.; Caumanns, J.J.; Hijmans, E.M.; Gennissen, A.M.C.; Severson, T.M.; Evers, B.; Wisman, G.B.A.; Meersma, G.J.; Lieftink,

C.; Beijersbergen, R.L.; et al. ARID1A mutation sensitizes most ovarian clear cell carcinomas to BET inhibitors. Oncogene 2018, 37,

4611–4625. [CrossRef] [PubMed]

Ogiwara, H.; Takahashi, K.; Sasaki, M.; Kuroda, T.; Yoshida, H.; Watanabe, R.; Maruyama, A.; Makinoshima, H.; Chiwaki, F.;

Sasaki, H.; et al. Targeting the Vulnerability of Glutathione Metabolism in ARID1A-Deficient Cancers. Cancer Cell 2019, 35,

177–190.e8. [CrossRef]

Wiegand, K.C.; Hennessy, B.T.; Leung, S.; Wang, Y.; Ju, Z.; Murray, M.; Kalloger, S.; Finlayson, S.; Stemke-Hale, K.; Lu, Y.; et al. A

functional proteogenomic analysis of endometrioid and clear cell carcinomas using reverse phase protein array and mutation

analysis: Protein expression is histotype-specific and loss of ARID1A/BAF250a is associated with AKT phosphorylation. BMC

Cancer 2014, 14, 120. [CrossRef]

Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al.

Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [CrossRef]

Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al.

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [CrossRef]

Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.;

Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019,

51, 202–206. [CrossRef]

Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 2017,

377, 2500–2501. [CrossRef]

Akbari, M.R.; Zhang, S.; Cragun, D.; Lee, J.-H.; Coppola, D.; McLaughlin, J.R.; Risch, H.A.; Rosen, B.; Shaw, P.; Sellers, T.A.; et al.

Correlation between germline mutations in MMR genes and microsatellite instability in ovarian cancer specimens. Fam. Cancer

2017, 16, 351–355. [CrossRef] [PubMed]

Feinberg, J.; Elvin, J.A.; Bellone, S.; Santin, A.D. Identification of ovarian cancer patients for immunotherapy by concurrent

assessment of tumor mutation burden (TMB), microsatellite instability (MSI) status, and targetable genomic alterations (GA).

Gynecol. Oncol. 2018, 149 (Suppl. 1), 36. [CrossRef]

Jiang, T.; Chen, X.; Su, C.; Ren, S.; Zhou, C. Pan-cancer analysis of ARID1A Alterations as Biomarkers for Immunotherapy

Outcomes. J. Cancer 2020, 11, 776–780. [CrossRef] [PubMed]

Thomas, L.J.; Vitale, L.; O’Neill, T.; Dolnick, R.Y.; Wallace, P.K.; Minderman, H.; Gergel, L.E.; Forsberg, E.M.; Boyer, J.M.; Storey,

J.R.; et al. Development of a Novel Antibody-Drug Conjugate for the Potential Treatment of Ovarian, Lung, and Renal Cell

Carcinoma Expressing TIM-1. Mol. Cancer Ther. 2016, 15, 2946–2954. [CrossRef] [PubMed]

Goto, M.; Miwa, H.; Shikami, M.; Tsunekawa-Imai, N.; Suganuma, K.; Mizuno, S.; Takahashi, M.; Mizutani, M.; Hanamura, I.;

Nitta, M. Importance of Glutamine Metabolism in Leukemia Cells by Energy Production Through TCA Cycle and by Redox

Homeostasis. Cancer Investig. 2014, 32, 241–247. [CrossRef] [PubMed]

Roesch, A.; Vultur, A.; Bogeski, I.; Wang, H.; Zimmermann, K.M.; Speicher, D.W.; Körbel, C.; Laschke, M.W.; Gimotty, P.A.;

Philipp, S.E.; et al. Overcoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of

Slow-Cycling JARID1Bhigh Cells. Cancer Cell 2013, 23, 811–825. [CrossRef] [PubMed]

Vazquez, F.; Lim, J.-H.; Chim, H.; Bhalla, K.; Girnun, G.; Pierce, K.; Clish, C.B.; Granter, S.R.; Widlund, H.R.; Spiegelman, B.M.;

et al. PGC1α Expression Defines a Subset of Human Melanoma Tumors with Increased Mitochondrial Capacity and Resistance to

Oxidative Stress. Cancer Cell 2013, 23, 287–301. [CrossRef]

Viale, A.; Pettazzoni, P.; Lyssiotis, C.A.; Ying, H.; Sanchez, N.; Marchesini, M.; Carugo, A.; Green, T.; Seth, S.; Giuliani, V.; et al.

Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 2014, 514, 628–632. [CrossRef]

Molina, J.R.; Sun, Y.; Protopopova, M.; Gera, S.; Bandi, M.; Bristow, C.; McAfoos, T.; Morlacchi, P.; Ackroyd, J.J.; Agip, A.-N.A.;

et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 2018, 24, 1036–1046. [CrossRef]

El-Mir, M.-Y.; Nogueira, V.; Fontaine, E.; Avéret, N.; Rigoulet, M.; Leverve, X. Dimethylbiguanide Inhibits Cell Respiration via an

Indirect Effect Targeted on the Respiratory Chain Complex I. J. Biol. Chem. 2000, 275, 223–228. [CrossRef]

Thakur, S.; Daley, B.; Gaskins, K.; Vasko, V.V.; Boufraqech, M.; Patel, D.; Sourbier, C.; Reece, J.M.; Cheng, S.-Y.; Kebebew, E.; et al.

Metformin Targets Mitochondrial Glycerophosphate Dehydrogenase to Control Rate of Oxidative Phosphorylation and Growth

of Thyroid Cancer In Vitro and In Vivo. Clin. Cancer Res. 2018, 24, 4030–4043. [CrossRef] [PubMed]

Wheaton, W.W.; Weinberg, S.E.; Hamanaka, R.B.; Soberanes, S.; Sullivan, L.B.; Anso, E.; Glasauer, A.; Dufour, E.; Mutlu, G.M.;

Budigner, G.S.; et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 2014, 3, e02242.

[CrossRef] [PubMed]

Bridges, H.R.; Jones, A.J.Y.; Pollak, M.N.; Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in

mitochondria. Biochem. J. 2014, 462, 475–487. [CrossRef] [PubMed]

Wilcock, C.; Bailey, C.J. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 1994, 24, 49–57.

[CrossRef]

Owen, M.R.; Doran, E.; Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of

the mitochondrial respiratory chain. Biochem. J. 2000, 348, 607–614. [CrossRef]

Eikawa, S.; Nishida, M.; Mizukami, S.; Yamazaki, C.; Nakayama, E.; Udono, H. Immune-mediated antitumor effect by type 2

diabetes drug, metformin. Proc. Natl. Acad. Sci. USA 2015, 112, 1809–1814. [CrossRef] [PubMed]

Antioxidants 2021, 10, 187

15 of 15

111. Sanada, S.; Futami, K.; Terada, A.; Yonemoto, K.; Ogasawara, S.; Akiba, J.; Yasumoto, M.; Sumi, A.; Ushijima, K.; Kamura, T.; et al.

RECQL1 DNA Repair Helicase: A Potential Therapeutic Target and a Proliferative Marker against Ovarian Cancer. PLoS ONE

2013, 8, e72820. [CrossRef]

112. Arai, A.; Chano, T.; Futami, K.; Furuichi, Y.; Ikebuchi, K.; Inui, T.; Tameno, H.; Ochi, Y.; Shimada, T.; Hisa, Y.; et al. RECQL1 and

WRN Proteins Are Potential Therapeutic Targets in Head and Neck Squamous Cell Carcinoma. Cancer Res. 2011, 71, 4598–4607.

[CrossRef] [PubMed]

113. Chan, E.M.; Shibue, T.; McFarland, J.M.; Gaeta, B.; Ghandi, M.; Dumont, N.; Gonzalez, A.; McPartlan, J.S.; Li, T.; Zhang, Y.; et al.

WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nat. Cell Biol. 2019, 568, 551–556. [CrossRef]

114. Sakharkar, M.K.; Sakharkar, K.R.; Pervaiz, S. Druggability of human disease genes. Int. J. Biochem. Cell Biol. 2007, 39, 1156–1164.

[CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る