リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Chlorogenic Acid and Caffeine in Coffee Restore Insulin Signaling in Pancreatic Beta Cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Chlorogenic Acid and Caffeine in Coffee Restore Insulin Signaling in Pancreatic Beta Cells

Ihara, Yuka Asahara, Shunichirou Inoue, Hiroyuki Seike, Masako Ando, Misaki Kabutoya, Hiroki Kimura, Maki Kido, Yoshiaki 神戸大学

2023

概要

The incidence of type 2 diabetes is reported to be lower in frequent coffee drinkers than in non-coffee drinkers. To elucidate the echanism by which coffee prevents the onset of type 2 diabetes, we analyzed how caffeine and chlorogenic acid, which are components of coffee, alter insulin signaling in MIN6 cells, a mouse pancreatic β cell line. The results showed that caffeine improved insulin signaling under endoplasmic reticulum stress, and chlorogenic acid protected pancreatic β cells by enhancing the expression of insulin receptor substrate 2 via cAMP response element-binding protein and promoting insulin signaling downstream of insulin receptor substrate 2. In addition, chlorogenic acid was a potent antioxidant for the protection of pancreatic β cells. Furthermore, in vivo and in vitro analyses revealed that the pancreatic β cell-protective effect of chlorogenic acid was mediated by the alleviation of endoplasmic reticulum stress. The results suggest that these components of coffee have the potential to reduce the pathogenesis of type 2 diabetes and improve pancreatic β cell insufficiency.

この論文で使われている画像

参考文献

International Diabetes Federation. IDF Diabetes Atlas. 9th ed. Brussels:International Diabetes

Federation;2019.

Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802–1812.

Hashimoto N, Kido Y, Uchida T, Asahara S, Shigeyama Y, Matsuda T, et al. Ablation of PDK1 in pancreatic

beta cells induces diabetes as a result of loss of beta cell mass. Nat Genet. 2006;38(5):589–593.

Shigeyama Y, Kobayashi T, Kido Y, Hashimoto N, Asahara S, Matsuda T, et al. Biphasic response of

pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice. Mol Cell Biol.

2008;28(9):2971–2979.

Bartolomé A, Kimura-Koyanagi M, Asahara S, Guillén C, Inoue H, Teruyama K, et al. Pancreatic β-cell

failure mediated by mTORC1 hyperactivity and autophagic impairment. Diabetes. 2014;63(9):2996–3008.

Uchida T, Nakamura T, Hashimoto N, Matsuda T, Kotani K, Sakaue H, et al. Deletion of Cdkn1b ameliorates

hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat Med. 2005;11(2)175–

182.

Asahara S, Etoh H, Inoue H, Teruyama K, Shibutani Y, Ihara Y, et al. Paternal allelic mutation at the Kcnq1

locus reduces pancreatic β-cell mass by epigenetic modification of Cdkn1c. Proc Natl Acad Sci U S A.

2015;112(27):8332–8337.

Wu JN, Ho SC, Zhou C, Ling WH, Chen WQ, Wang CL, et al. Coffee consumption and risk of coronary heart

diseases: a meta-analysis of 21 prospective cohort studies. Int J Cardiol. 2009;137(3):216–225.

RELATIONSHIP BETWEEN COFFEE COMPONENTS AND PANCREATIC Β CELLS

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Larsson SC, Virtamo J, Wolk A. Coffee consumption and risk of stroke in women. Stroke. 2011;42(4):908–

912.

Arendash GW, Cao C. Caffeine and coffee as therapeutics against Alzheimer's disease. J Alzheimers Dis.

2010;20 Suppl 1:S117–126.

Choi E, Choi KH, Park SM, Shin D, Joh HK, Cho E. The Benefit of Bone Health by Drinking Coffee among

Korean Postmenopausal Women: A Cross-Sectional Analysis of the Fourth & Fifth Korea National Health

and Nutrition Examination Surveys. PLoS One. 2016;11(1):e0147762.

Nkondjock A. Coffee consumption and the risk of cancer: an overview. Cancer lett. 2009;277(2)121–125.

van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA. 2005;294

(1):97–104.

Faerch K, Lau C, Tatens I, Pedersen OB, Jørgensen T, Borch-Johnsen K, et al. A statistical approach based

on substitution of macronutrients provides additional information to models analyzing single dietary factors

in relation to type 2 diabetes in danish adults: the Inter99 study. J Nutr. 2005;135(5):1177–1182.

Greenberg JA, Axen KV, Schnoll R, Boozer CN. Coffee, tea and diabetes: the role of weight loss and caffeine.

Int J Obes (Lond). 2005;29(9):1121–1129.

Matsuda T, Kido Y, Asahara S, Kaisho T, Tanaka T, Hashimoto N, et al. Ablation of C/EBPbeta alleviates ER

stress and pancreatic beta cell failure through the GRP78 chaperone in mice. J Clin Invest. 2010;120(1):115–

126.

Asahara S, Shibutani Y, Teruyama K, Inoue HY, Kawada Y, Etoh H, et al. Ras-related C3 botulinum toxin

substrate 1 (RAC1) regulates glucose-stimulated insulin secretion via modulation of F-actin. Diabetologia.

2013;56(5):1088–1097.

Kanno A, Asahara S, Furubayashi A, Masuda K, Yoshitomi R, Suzuki E, et al. GCN2 regulates pancreatic β

cell mass by sensing intracellular amino acid levels. JCI Insight. 2020;5(9):e128820.

Asahara S, Matsuda T, Kido Y, Kasuga M. Increased ribosomal biogenesis induces pancreatic beta cell failure

in mice model of type 2 diabetes. Biochem Biophys Res Commun. 2009;381(3):367–371.

Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, et al. Targeted disruption of the Chop gene

delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest. 2002;109(4):525–532.

Pavlica S, Gebhardt R. Protective effects of ellagic and chlorogenic acids against oxidative stress in PC12

cells. Free Radic Res. 2005;39(12):1377–1390.

Ohkawara T, Takeda H, Nishihira J. Protective effect of chlorogenic acid on the inflammatory damage of

pancreas and lung in mice with l-arginine-induced pancreatitis. Life Sci. 2017;190:91–96.

Wang L, Shen X, Wu Y, Zhang D. Coffee and caffeine consumption and depression: A meta-analysis of

observational studies. Aust N Z J Psychiatry. 2016;50(3):228–242.

Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB. Long-term coffee consumption and risk of

cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies.

Circulation. 2014;129(6):643–659.

Nurminen ML, Niittynen L, Korpela R, Vapaatalo H. Coffee, caffeine and blood pressure: a critical review.

Eur J Clin Nutr. 1999;53(11):831–839.

Zhao LG, Li ZY, Feng GS, Ji XW, Tan YT, Li HL, et al. Coffee drinking and cancer risk: an umbrella review

of meta-analyses of observational studies. BMC Cancer. 2020;20(1):101.

Gunter MJ, Murphy N, Cross AJ, Dossus L, Dartois L, Fagherazzi G, et al. Coffee Drinking and Mortality in

10 European Countries: A Multinational Cohort Study. Ann Intern Med. 2017;167(4):236–247.

van Dam RM, Feskens EJM. Coffee consumption and risk of type 2 diabetes mellitus. Lancet.

2002;360(9344):1477–1478.

Jung UJ, Lee MK, Park YB, Jeon SM, Choi MS. Antihyperglycemic and antioxidant properties of caffeic

acid in db/db mice. J Pharmacol Exp Ther. 2006;318(2):476–483.

Kato M, Noda M, Inoue M, Kadowaki T, Tsugane S; JPHC Study Group. Psychological factors, coffee and

risk of diabetes mellitus among middle-aged Japanese: a population-based prospective study in the JPHC

study cohort. Endocr J. 2009;56(3):459–468.

Jiang X, Zhang D, Jiang W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a metaanalysis of prospective studies. Eur J Nutr. 2014;53(1):25–38.

Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB. Caffeinated and decaffeinated coffee consumption

and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care.

2014;37(2):569–586.

Mansour A, Mohajeri-Tehrani MR, Samadi M, Qorbani M, Merat S, Adibi H, et al. Effects of supplementation

with main coffee components including caffeine and/or chlorogenic acid on hepatic, metabolic, and

inflammatory indices in patients with non-alcoholic fatty liver disease and type 2 diabetes: a randomized,

double-blind, placebo-controlled, clinical trial. Nutr J. 2021;20(1):35.

E7

Y. IHARA et al.

34. Yin XL, Xu BQ, Zhang YQ. Gynura divaricata rich in 3, 5-/4, 5-dicaffeoylquinic acid and chlorogenic acid

reduces islet cell apoptosis and improves pancreatic function in type 2 diabetic mice. Nutr Metab (Lond).

2018;15:73.

35. Kazaz IO, Demir S, Kerimoglu G, Colak F, Turkmen Alemdar N, Yilmaz Dogan S, et al. Chlorogenic acid

ameliorates torsion/detorsion-induced testicular injury via decreasing endoplasmic reticulum stress. J Pediatr

Urol. 2022;18(3):289.e1–289.e7.

36. Tousch D, Lajoix AD, Hosy E, Azay-Milhau J, Ferrare K, Jahannault C, et al. Chicoric acid, a new compound

able to enhance insulin release and glucose uptake. Biochem Biophys Res Commun. 2008;377(1);131–135.

37. Kim H, Park J, Kang H, Yun SP, Lee YS, Lee YI, et al. Activation of the Akt1-CREB pathway promotes

RNF146 expression to inhibit PARP1-mediated neuronal death. Sci Signal. 2020;13(663):eaax7119.

38. Schwarzschild MA, Chen JF, Ascherio A. Caffeinated clues and the promise of adenosine A(2A) antagonists

in PD. Neurology. 2002;58(8):1154–1160.

39. Buscemi S, Mattina A, Tranchina MR, Verga S. Acute effects of coffee on QT interval in healthy subjects.

Nutrition J. 2011;10:15.

40. Rieg T, Steigele H, Schnermann J, Richter K, Osswald H, Vallon V. Requirement of intact adenosine A1

receptors for the diuretic and natriuretic action of the methylxanthines theophylline and caffeine. J Pharmacol

Exp Ther. 2005;313(1):403–409.

41. Lee S, Min JY, Min KB. Caffeine and Caffeine Metabolites in Relation to Insulin Resistance and Beta Cell

Function in U.S. Adults. Nutrients. 2020;12(6):1783.

42. Guarino MP, Ribeiro MJ, Sacramento JF, Conde SV. Chronic caffeine intake reverses age-induced insulin

resistance in the rat: effect on skeletal muscle Glut4 transporters and AMPK activity. Age (Dordr).

2013;35(5):1755–1765.

43. Park S, Jang JS, Hong SM. Long-term consumption of caffeine improves glucose homeostasis by enhancing

insulinotropic action through islet insulin/insulin-like growth factor 1 signaling in diabetic rats. Metabolism.

2007;56(5):599–607.

E8

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る