リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of sustainable bioenergy system by integrating hydrothermal carbonization and anaerobic digestion processes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of sustainable bioenergy system by integrating hydrothermal carbonization and anaerobic digestion processes

Shaba, MOHAMMED Ibrahim 北海道大学

2022.03.24

概要

The application of lignocellulose biomass as a sustainable resource has gained traction to achieve a reduction in greenhouse gas emissions. Valorization via hydrothermal carbonization (HTC) of lignocellulosic biomass is necessary to convert high moisture biomass to solid fuel with a reduced inorganic content and to improve it biodegradability through hydrolysis of the recalcitrant in lignocellulose biomass that would enhance the production of biogas in anaerobic digestion process. Utilization of anaerobic digestion (AD) process for energy demand and supply regulation are still rare at the industrial scale, probably because they are unstable under some circumstances, such as variation of process conditions. This drawback can be overcome by developing an adaptive identifier system that will enhance the stable performance of the online biogas production. Thus, the objectives of this studies are (1) Investigating the effect of processing parameters on the products of hydrothermal carbonization of corn stover. (2) Development of an adaptive identifier system of anaerobic digestion process for sustainable biogas production.

1. Investigating the effect of processing parameters on the products of hydrothermal carbonization of corn stover This investigation has focused on the effect of processing parameters on the products of HTC— namely solid fuel or hydrochar, liquid and gas fractions, and utilizing the produced corn stover hydrochar in AD process to increase biogas production. HTC was conducted in a temperature-controlled batch reactor with corn stover and deionized water under oxygen-free conditions obtained by pressurizing the reactor headspace with nitrogen gas. The properties of the hydrochar and liquid and gas fractions were evaluated as a function of the process temperature (250–350 °C), residence time (30–60 min) and biomass/water ratio (0.09–0.14). Central composite design (CCD) modules in a response surface methodology (RSM) were used to optimize processing parameters. The maximum mass yield, energy yield and high heating value (HHV) of the hydrochar produced were 29.91% dry weight (dw), 42.38% dw and 26.03 MJ/kg, respectively. corn stover hydrochar produced at high temperature decreased biogas production while corn stover hydrochar produced at low temperature increased biogas production. Concentrations of acetic acid and hydrogen gas were 6.93 g/L and 0.25 v/v%, respectively. Experimental results after process optimization were in satisfactory agreement with the predicted HHV. The optimal HTC process parameters were determined to be 305 °C with a 60 min residence time and a biomass/water ratio of 0.114, yielding hydrochar with a HHV of 25.42 MJ/kg.

2. Development of an adaptive identifier system of anaerobic digestion process for sustainable biogas production The corn stover hydrochar obtained from hydrothermal carbonization at a temperature, residential time, and biomass/water ratio of 215 oC, 45 min and 0.115 respectively was added to the bioreactor as a substrate inoculated with food waste and cow dung to generate biogas. A state–space AD model containing one algebraic equation and two differential equations was constructed. All the parameters used in the model were dependent on the AD process conditions. An adaptive identifier system was developed to automatically estimate parameter values from input and output data. This made it possible to operate the system under different conditions. Daily cumulative biogas production was predicted using the model, and goodness-of-fit analysis indicated that the predicted biogas production values had accuracies of >90% during both model construction and validation.

3. Conclusions
This study demonstrates that corn stover can be converted to solid fuel through HTC. The corn stover hydrochar produced was compared with pulverized coal utilized in power plant. Using the adaptive identifier system indicated that data for at least 20 and 140 h were required to estimate stable parameters related to bacterial and substrate inputs, respectively. It is recommended to produced corn stover hydrochar at low temperature (100–200 °C) and residential time (10–30 min) to prevent inhibitor of methanogenesis, for increase production of biogas and utilize the hydrothermal process water in AD process.

この論文で使われている画像

参考文献

Abdullah, R., Ueda, K., & Saka, S. (2014). Hydrothermal decomposition of various crystalline celluloses as treated by semi-flow hot-compressed water. Journal of Wood Science 2014 60:4, 60(4), 278–286. https://doi.org/10.1007/S10086-014-1401-7

A. Cantero, D., Celia Martínez, D. Bermejo, M., & J. Cocero, M. (2014). Simultaneous and selective recovery of cellulose and hemicellulose fractions from wheat bran by supercritical water hydrolysis. Green Chemistry, 17(1), 610–618. https://doi.org/10.1039/C4GC01359J

Ahring, B. K., Biswas, R., Ahamed, A., Teller, P. J., & Uellendahl, H. (2015). Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresource Technology, 175, 182–188. https://doi.org/10.1016/J.BIORTECH.2014.10.082

Akhtar, J., & Amin, N. A. S. (2011). A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 15(3), 1615–1624. https://doi.org/10.1016/J.RSER.2010.11.054

Anca-Couce, A. (2016). Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Progress in Energy and Combustion Science, 53, 41–79. https://doi.org/10.1016/J.PECS.2015.10.002

Arzate, J. A., Kirstein, M., Ertem, F. C., Kielhorn, E., Ramirez Malule, H., Neubauer, P., Cruz- Bournazou, M. N., & Junne, S. (2017). Anaerobic Digestion Model (AM2) for the Description of Biogas Processes at Dynamic Feedstock Loading Rates. Chemie-Ingenieur- Technik, 89(5), 686–695. https://doi.org/10.1002/CITE.201600176

Athika Chuntanapum, Tau Len-Kelly Yong, †, Shigeru Miyake, and, & Matsumura*, Y. (2008). Behavior of 5-HMF in Subcritical and Supercritical Water. Industrial and Engineering Chemistry Research, 47(9), 2956–2962. https://doi.org/10.1021/IE0715658

Bastin, G., & Dochain, D. (1990). On-line estimation and adaptive control of bioreactors. Elsevier.

Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., & Steyer, J.-P. (2001). Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnology and Bioengineering, 75(4), 424–438. https://doi.org/10.1002/BIT.10036

Blumensaat, F., & Keller, J. (2005). Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Research, 39(1), 171–183. https://doi.org/10.1016/j.watres.2004.07.024

Bonawitz, N. D., & Chapple, C. (2010). The Genetics of Lignin Biosynthesis: Connecting Genotype to Phenotype. Http://Dx.Doi.Org/10.1146/Annurev-Genet-102209-163508, 44, 337–363. https://doi.org/10.1146/ANNUREV-GENET-102209-163508

Byrne, R. H., & Abdallah, C. T. (1995). Design of a Model Reference Adaptive Controller for Vehicle Road Following. In Mathl. Comput. Modelling (Vol. 22, Issue 7).

Cai, J., Li, B., Chen, C., Wang, J., Zhao, M., & Zhang, K. (2016). Hydrothermal carbonization of tobacco stalk for fuel application. Bioresource Technology, 220, 305–311. https://doi.org/10.1016/J.BIORTECH.2016.08.098

Camillo Falco, Niki Baccile, & Maria-Magdalena Titirici. (2011). Morphological and structural differences between glucose , cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chemistry, 13(11), 3273–3281. https://doi.org/10.1039/C1GC15742F

Chen, X. yan, Huang, Y. han, Zhao, Y., Mo, B., Mi, H. xing, & Huang, C. hua. (2017). Analytical method for determining rill detachment rate of purple soil as compared with that of loess soil. Journal of Hydrology, 549, 236–243. https://doi.org/10.1016/J.JHYDROL.2017.03.065

Chew, J. J., & Doshi, V. (2011). Recent advances in biomass pretreatment – Torrefaction fundamentals and technology. Renewable and Sustainable Energy Reviews, 15(8), 4212– 4222. https://doi.org/10.1016/j.rser.2011.09.017

Codignole Luz, F., Volpe, M., Fiori, L., Manni, A., Cordiner, S., Mulone, V., & Rocco, V. (2018). Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization- anaerobic digestion process. Bioresource Technology, 256, 102–109. https://doi.org/10.1016/j.biortech.2018.02.021

de Vlieger, D. J. M., Chakinala, A. G., Lefferts, L., Kersten, S. R. A., Seshan, K., & Brilman, D. W. F. (2012). Hydrogen from ethylene glycol by supercritical water reforming using noble and base metal catalysts. Applied Catalysis B: Environmental, 111–112, 536–544. https://doi.org/10.1016/J.APCATB.2011.11.005

Deng, J., Li, M., & Wang, Y. (2016). Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chemistry, 18(18), 4824–4854. https://doi.org/10.1039/C6GC01172A

Ding, L., Cheng, J., Lin, R., Deng, C., Zhou, J., & Murphy, J. D. (2020). Improving biohydrogen and biomethane co-production via two-stage dark fermentation and anaerobic digestion of the pretreated seaweed Laminaria digitata. Journal of Cleaner Production, 251, 119666. https://doi.org/10.1016/J.JCLEPRO.2019.119666

Ding, L., Cheng, J., Qiao, D., Yue, L., Li, Y. Y., Zhou, J., & Cen, K. (2017). Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production. Bioresource Technology, 241, 491–499. https://doi.org/10.1016/J.BIORTECH.2017.05.114

Effendi, A., Gerhauser, H., & Bridgwater, A. v. (2008). Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable and Sustainable Energy Reviews, 12(8), 2092–2116. https://doi.org/10.1016/J.RSER.2007.04.008

Elaigwu, S. E., & Greenway, G. M. (2016). Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: Comparison of the chemical and structural properties of the hydrochars. Journal of Analytical and Applied Pyrolysis, 118, 1–8. https://doi.org/10.1016/J.JAAP.2015.12.013

Erdogan, E., Atila, B., Mumme, J., Reza, M. T., Toptas, A., Elibol, M., & Yanik, J. (2015). Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresource Technology, 196, 35–42. https://doi.org/10.1016/J.BIORTECH.2015.06.115

Erlach, B., Harder, B., & Tsatsaronis, G. (2012). Combined hydrothermal carbonization and gasification of biomass with carbon capture. Energy, 45(1), 329–338. https://doi.org/10.1016/J.ENERGY.2012.01.057

Esen, M., & Yuksel, T. (2013). Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy and Buildings, 65, 340–351. https://doi.org/10.1016/j.enbuild.2013.06.018

Fan, J., bruyn, M. de, Budarin, V. L., Gronnow, M. J., Shuttleworth, P. S., Breeden, S., Macquarrie, D. J., & Clark, J. H. (2013). Direct Microwave-Assisted Hydrothermal Depolymerization of Cellulose. Journal of the American Chemical Society, 135(32), 12728–12731. https://doi.org/10.1021/JA4056273

Fang, Z., Sato, T., Smith, R. L., Inomata, H., Arai, K., & Kozinski, J. A. (2008). Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technology, 99(9), 3424–3430. https://doi.org/10.1016/J.BIORTECH.2007.08.008

Fengel, D. (1992). Characterization of Cellulose by Deconvoluting the OH Valency Range in FTIR Spectra. 46(4), 283–288. https://doi.org/10.1515/HFSG.1992.46.4.283

Fuertes, A. B., Arbestain, M. C., Sevilla, M., Maciá-Agulló, J. A., Fiol, S., López, R., Smernik, R. J., Aitkenhead, W. P., Arce, F., & Macías, F. (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Soil Research, 48(7), 618. https://doi.org/10.1071/SR10010

Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160–177. https://doi.org/10.1002/bbb.198

Gao, P., Zhou, Y., Meng, F., Zhang, Y., Liu, Z., Zhang, W., & Xue, G. (2016). Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy, 97, 238–245. https://doi.org/10.1016/J.ENERGY.2015.12.123

Gao, Y., Wang, X. H., Yang, H. P., & Chen, H. P. (2012). Characterization of products from hydrothermal treatments of cellulose. Energy, 42(1), 457–465. https://doi.org/10.1016/J.ENERGY.2012.03.023

Hamed, T. A., & Alshare, A. (2021). Environmental Impact of Solar and Wind energy- A Review. Journal of Sustainable Development of Energy, Water and Environment Systems, N/A(N/A), 0–0. https://doi.org/10.13044/j.sdewes.d9.0387

Hassam, S., Ficara, E., Leva, A., & Harmand, J. (2015). A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1). Biochemical Engineering Journal, 99, 193–203. https://doi.org/10.1016/j.bej.2015.03.007

Hastings, A., Clifton-Brown, J., Wattenbach, M., Mitchell, C. P., Stampfl, P., & Smith, P. (2009). Future energy potential of Miscanthus in Europe. GCB Bioenergy, 1(2), 180–196. https://doi.org/10.1111/j.1757-1707.2009.01012.x

He, C., Giannis, A., & Wang, J. Y. (2013). Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Applied Energy, 111, 257–266. https://doi.org/10.1016/J.APENERGY.2013.04.084

Heidari, M., Salaudeen, S., Norouzi, O., Acharya, B., & Dutta, A. (2020). Numerical Comparison of a Combined Hydrothermal Carbonization and Anaerobic Digestion System with Direct Combustion of Biomass for Power Production. Processes, 8(1), 43. https://doi.org/10.3390/pr8010043

Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807. https://doi.org/10.1126/SCIENCE.1137016

Hoekman, S. K., Broch, A., & Robbins, C. (2011). Hydrothermal Carbonization (HTC) of Lignocellulosic Biomass. Energy and Fuels, 25(4), 1802–1810. https://doi.org/10.1021/EF101745N

Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M., & Titirici, M.-M. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials, 22(7), 813–828. https://doi.org/10.1002/adma.200902812

IEA. (2001). Biogas and More! Systems and Markets Overview of Anaerobic digestion Biogas and More!

In-Gu Lee, †,‡, Mi-Sun Kim, ‡ and, & Son-Ki Ihm*, †. (2002). Gasification of Glucose in Supercritical Water. Industrial and Engineering Chemistry Research, 41(5), 1182–1188. https://doi.org/10.1021/IE010066I

Kabadayi Catalkopru, A., Kantarli, I. C., & Yanik, J. (2017). Effects of spent liquor recirculation in hydrothermal carbonization. Bioresource Technology, 226, 89–93. https://doi.org/10.1016/J.BIORTECH.2016.12.015

Kambo, H. S., & Dutta, A. (2014). Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Applied Energy, 135, 182–191. https://doi.org/10.1016/j.apenergy.2014.08.094

Kambo, H. S., & Dutta, A. (2015). Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Conversion and Management, 105, 746–755. https://doi.org/10.1016/J.ENCONMAN.2015.08.031

Kang, K., Nanda, S., Sun, G., Qiu, L., Gu, Y., Zhang, T., Zhu, M., & Sun, R. (2019). Microwave- assisted hydrothermal carbonization of corn stalk for solid biofuel production: Optimization of process parameters and characterization of hydrochar. Energy, 186, 115795. https://doi.org/10.1016/J.ENERGY.2019.07.125

Kang, S., Ye, J., Zhang, Y., & Chang, J. (2013). Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production. RSC Advances, 3(20), 7360. https://doi.org/10.1039/c3ra23314f

Karimi, K., & Taherzadeh, M. J. (2016). A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresource Technology, 200, 1008–1018. https://doi.org/10.1016/J.BIORTECH.2015.11.022

Kil, H., Li, D., Xi, Y., & Li, J. (2017). Model predictive control with on-line model identification for anaerobic digestion processes. Biochemical Engineering Journal, 128, 63–75. https://doi.org/10.1016/j.bej.2017.08.004

Kruse, A. (2008). Supercritical water gasification. In Biofuels, Bioproducts and Biorefining (Vol.2, Issue 5, pp. 415–437). https://doi.org/10.1002/bbb.93

Kruse, A., Funke, A., & Titirici, M. M. (2013). Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, 17(3), 515–521. https://doi.org/10.1016/J.CBPA.2013.05.004

Kumar, S. (2013). Sub- and Supercritical Water Technology for Biofuels. Advanced Biofuels and Bioproducts, 9781461433484, 147–183. https://doi.org/10.1007/978-1-4614-3348-4_11

Lauterböck, B., Ortner, M., Haider, R., & Fuchs, W. (2012). Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor. Water Research, 46(15), 4861–4869. https://doi.org/10.1016/j.watres.2012.05.022

Li, Y., Zhang, R., Liu, G., Chen, C., He, Y., & Liu, X. (2013). Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresource Technology, 149, 565–569. https://doi.org/10.1016/J.BIORTECH.2013.09.063

Liang, J., Nabi, M., Zhang, P., Zhang, G., Cai, Y., Wang, Q., Zhou, Z., & Ding, Y. (2020). Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. In Renewable and Sustainable Energy Reviews (Vol. 134). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.110335

Lin, R., Deng, C., Ding, L., Bose, A., & Murphy, J. D. (2019). Improving gaseous biofuel production from seaweed Saccharina latissima: The effect of hydrothermal pretreatment on energy efficiency. Energy Conversion and Management, 196, 1385–1394. https://doi.org/10.1016/J.ENCONMAN.2019.06.044

Liu, Z., Quek, A., Kent Hoekman, S., & Balasubramanian, R. (2013). Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel, 103, 943–949. https://doi.org/10.1016/J.FUEL.2012.07.069

Lubenova, V., Simeonov, I., & Queinnec, I. (2002). Two-Step Parameter and State Estimation of the Anaerobic Digestion. IFAC Proceedings Volumes, 35(1), 455–460. https://doi.org/10.3182/20020721-6-ES-1901.01385

Machado, N. T., de Castro, D. A. R., Santos, M. C., Araújo, M. E., Lüder, U., Herklotz, L., Werner, M., Mumme, J., & Hoffmann, T. (2018). Process analysis of hydrothermal carbonization of corn Stover with subcritical H2O. The Journal of Supercritical Fluids, 136, 110–122. https://doi.org/10.1016/J.SUPFLU.2018.01.012

Marin-Batista, J. D., Villamil, J. A., Rodriguez, J. J., Mohedano, A. F., & de la Rubia, M. A. (2019). Valorization of microalgal biomass by hydrothermal carbonization and anaerobic digestion. Bioresource Technology, 274, 395–402. https://doi.org/10.1016/J.BIORTECH.2018.11.103

Martinez, E., Marcos, A., Al-Kassir, A., Jaramillo, M. A., & Mohamad, A. A. (2012). Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production. Applied Energy, 95, 210–219. https://doi.org/10.1016/j.apenergy.2012.02.028

Mauky, E., Weinrich, S., Nägele, H. J., Jacobi, H. F., Liebetrau, J., & Nelles, M. (2016). Model Predictive Control for Demand-Driven Biogas Production in Full Scale. Chemical Engineering and Technology, 39(4), 652–664. https://doi.org/10.1002/ceat.201500412

May, R. M. (1976). Simple mathematical models with very complicated dynamics (Vol. 261, Issue 5560).

Mejdoub, H., & Ksibi, H. (2015). Regulation of Biogas Production Through Waste Water Anaerobic Digestion Process: Modeling and Parameters Optimization. Waste and Biomass Valorization, 6(1), 29–35. https://doi.org/10.1007/s12649-014-9324-5

Méndez-Acosta, H. O., Palacios-Ruiz, B., Alcaraz-González, V., González-Álvarez, V., & García- Sandoval, J. P. (2010). A robust control scheme to improve the stability of anaerobic digestion processes. Journal of Process Control, 20(4), 375–383. https://doi.org/10.1016/j.jprocont.2010.01.006

Mohammed, I. S., Aliyu, M., Abdullahi N.A., & Alhaji, I. A. (2020). Production of Bioenergy from Rice-Melon Husk Co-Digested with Cow Dung as Innoculant. Agricultural Engineering International: CIGR Journal, 22(1), 108–117. https://cigrjournal.org/index.php/Ejounral/article/view/4795

Mohammed, I. S., Aliyu, M., Dauda, S. M., Balami, A. A., & Yunusa, B. K. (2019). Synthesis and Optimization Process of Ethylene Glycol-Based Bio-lubricant from Palm Kernel Oil (PKO). JREE, 5(2), 1–9. http://repository.futminna.edu.ng:8080/jspui/handle/123456789/11950

Mohammed, I. S., Na, R., Kushima, K., & Shimizu, N. (2020). Investigating the Effect of Processing Parameters on the Products of Hydrothermal Carbonization of Corn Stover. Sustainability, 12(12), 5100. https://doi.org/10.3390/su12125100

Monlau, F., Barakat, A., Trably, E., Dumas, C., Steyer, J.-P., & Carrère, H. (2013). Lignocellulosic Materials Into Biohydrogen and Biomethane: Impact of Structural Features and Pretreatment. Http://Dx.Doi.Org/10.1080/10643389.2011.604258, 43(3), 260–322. https://doi.org/10.1080/10643389.2011.604258

Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., & Ladisch, M. R. (2005). Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresource Technology, 96(18), 1986–1993. https://doi.org/10.1016/J.BIORTECH.2005.01.013

Nakajima, S., Shimizu, N., Ishiwata, H., & Ito, T. (2016). The Start-up of Thermophilic Anaerobic Digestion of Municipal Solid Waste. http://www.enecho.

Nakason, K., Panyapinyopol, B., Kanokkantapong, V., Viriya-empikul, N., Kraithong, W., & Pavasant, P. (2018a). Characteristics of hydrochar and liquid fraction from hydrothermal carbonization of cassava rhizome. Journal of the Energy Institute, 91(2), 184–193. https://doi.org/10.1016/J.JOEI.2017.01.002

Nakason, K., Panyapinyopol, B., Kanokkantapong, V., Viriya-empikul, N., Kraithong, W., & Pavasant, P. (2018b). Hydrothermal carbonization of unwanted biomass materials: Effect of process temperature and retention time on hydrochar and liquid fraction. Journal of the Energy Institute, 91(5), 786–796. https://doi.org/10.1016/J.JOEI.2017.05.002

Pala, M., Kantarli, I. C., Buyukisik, H. B., & Yanik, J. (2014). Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresource Technology, 161, 255–262. https://doi.org/10.1016/J.BIORTECH.2014.03.052

Paul, S., Dutta, A., & Defersha, F. (2018). Biocarbon, biomethane and biofertilizer from corn residue: A hybrid thermo-chemical and biochemical approach. Energy, 165, 370–384. https://doi.org/10.1016/J.ENERGY.2018.09.182

Pavlovič, I., Knez, Ž., & Škerget, M. (2013). Hydrothermal Reactions of Agricultural and Food Processing Wastes in Sub- and Supercritical Water: A Review of Fundamentals, Mechanisms, and State of Research. Journal of Agricultural and Food Chemistry, 61(34), 8003–8025. https://doi.org/10.1021/JF401008A

Qian EW. (2013). Pretreatment and saccharification of lignocellulosic biomass. In: Tojo S, Hirasawa T, editors. Research approaches to sustainable biomass systems. Academic Press.

Reddy, S. N., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2014). Supercritical water gasification of biomass for hydrogen production. International Journal of Hydrogen Energy, 39(13), 6912–6926. https://doi.org/10.1016/J.IJHYDENE.2014.02.125

Renard, P., Dochain, D., Bastin, G., Naveau, H., & Nyns, E.-J. (1988). Adaptive control of anaerobic digestion processes?a pilot-scale application. Biotechnology and Bioengineering, 31(4), 287–294. https://doi.org/10.1002/bit.260310402

Reza, M. T., Rottler, E., Herklotz, L., & Wirth, B. (2015). Hydrothermal carbonization (HTC) of wheat straw: Influence of feedwater pH prepared by acetic acid and potassium hydroxide. Bioresource Technology, 182, 336–344. https://doi.org/10.1016/J.BIORTECH.2015.02.024

Rowel RM. (2005). Handbook of Wood Chemistry and Wood Composites. CRC Press. https://doi.org/10.1201/9780203492437

Salman, C. A., Schwede, S., Thorin, E., & Yan, J. (2017). Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes. Applied Energy, 204, 1074–1083. https://doi.org/10.1016/j.apenergy.2017.05.006

Sevilla, M., & Fuertes, A. B. (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 47(9), 2281–2289. https://doi.org/10.1016/J.CARBON.2009.04.026

Shimizu, N., Abea, A., Ushiyama, T., & Öner, E. T. (2020). Effect of temperature on the hydrolysis of levan treated with compressed hot water fluids. Food Science & Nutrition, 8(4), 2004– 2014. https://doi.org/10.1002/FSN3.1488

Shimizu, N. & Yoshida Kazuto. (2021). Development of an Efficient Anaerobic Co-digestion Process for Biogas from Food Waste and Paper. Environ. Control Biol., 59(4), 1–7.

Simeonov, I., & Queinnec, I. (2006). Linearizing control of the anaerobic digestion with addition of acetate (control of the anaerobic digestion). Control Engineering Practice, 14(7), 799–810. https://doi.org/10.1016/j.conengprac.2005.04.011

Sinechal, X. J., Installe, M. J., & Nyns, E. J. (1979). Differentiation between acetate and higher volatile acids in the modeling of the anaerobic biomethanation process. Biotechnology Letters, 1(8), 309–314. https://doi.org/10.1007/BF01388184

Smith, A. M., & Ross, A. B. (2016). Production of bio-coal, bio-methane and fertilizer from seaweed via hydrothermal carbonisation. Algal Research, 16, 1–11. https://doi.org/10.1016/J.ALGAL.2016.02.026

Soccol, C. R., Faraco, V., Karp, S. G., Vandenberghe, L. P. S., Thomaz-Soccol, V., Woiciechowski, A. L., & Pandey, A. (2019). Lignocellulosic Bioethanol: Current Status and Future Perspectives. Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, 331–354. https://doi.org/10.1016/B978-0-12-816856-1.00014-2

Song, X., Wachemo, A. C., Zhang, L., Bai, T., Li, X., Zuo, X., & Yuan, H. (2019). Effect of hydrothermal pretreatment severity on the pretreatment characteristics and anaerobic digestion performance of corn stover. Bioresource Technology, 289. https://doi.org/10.1016/j.biortech.2019.121646

Steinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry, 41(6), 1301–1310. https://doi.org/10.1016/J.SOILBIO.2009.03.016

Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences 2008, Vol. 9, Pages 1621-1651, 9(9), 1621–1651. https://doi.org/10.3390/IJMS9091621

Tekin, K., Karagöz, S., & Bektaş, S. (2014). A review of hydrothermal biomass processing. Renewable and Sustainable Energy Reviews, 40, 673–687. https://doi.org/10.1016/J.RSER.2014.07.216

Theander, O. (1985). Cellulose, Hemicellulose and Extractives. Fundamentals of Thermochemical Biomass Conversion, 35–60. https://doi.org/10.1007/978-94-009-4932-4_2

Theegala, C. S., & Midgett, J. S. (2012). Hydrothermal liquefaction of separated dairy manure for production of bio-oils with simultaneous waste treatment. Bioresource Technology, 107, 456–463. https://doi.org/10.1016/J.BIORTECH.2011.12.061

Ushiyama, T., & Shimizu, N. (2018). Microencapsulation using Spray-drying: The Use of Fine Starch Solution for the Wall Material. Food Science and Technology Research, 24(4), 653– 659. https://doi.org/10.3136/fstr.24.653

Volpe, M., & Fiori, L. (2017). From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties. Journal of Analytical and Applied Pyrolysis, 124, 63–72. https://doi.org/10.1016/J.JAAP.2017.02.022

Volpe, M., Goldfarb, J. L., & Fiori, L. (2018). Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties. Bioresource Technology, 247, 310–318. https://doi.org/10.1016/J.BIORTECH.2017.09.072

Wang, F., Ouyang, D., Zhou, Z., Page, S. J., Liu, D., & Zhao, X. (2021). Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. Journal of Energy Chemistry, 57, 247–280. https://doi.org/10.1016/j.jechem.2020.08.060

Wang, F., Wang, J., Gu, C., Han, Y., Zan, S., & Wu, S. (2019). Effects of process water recirculation on solid and liquid products from hydrothermal carbonization of Laminaria. Bioresource Technology, 292, 121996. https://doi.org/10.1016/J.BIORTECH.2019.121996

Wang, T., Zhai, Y., Zhu, Y., Li, C., & Zeng, G. (2018). A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renewable and Sustainable Energy Reviews, 90, 223–247. https://doi.org/10.1016/J.RSER.2018.03.071

Weingarten, R., Conner, Wm. C., & Huber, G. W. (2012). Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy & Environmental Science, 5(6), 7559. https://doi.org/10.1039/c2ee21593d

Weng, J.-K., & Chapple, C. (2010). The origin and evolution of lignin biosynthesis. New Phytologist, 187(2), 273–285. https://doi.org/10.1111/J.1469-8137.2010.03327.X

Wörmeyer, K., Ingram, T., Saake, B., Brunner, G., & Smirnova, I. (2011). Comparison of different pretreatment methods for lignocellulosic materials. Part II: Influence of pretreatment on the properties of rye straw lignin. Bioresource Technology, 102(5), 4157–4164. https://doi.org/10.1016/J.BIORTECH.2010.11.063

Wu, Z., & Xia, X. (2015). Optimal switching renewable energy system for demand side management. Solar Energy, 114, 278–288. https://doi.org/10.1016/j.solener.2015.02.001

Xiao, L. P., Shi, Z. J., Xu, F., & Sun, R. C. (2012). Hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology, 118, 619–623. https://doi.org/10.1016/J.BIORTECH.2012.05.060

Yoshida, K., Kametani, K., & Shimizu, N. (2020). Adaptive identification of anaerobic digestion process for biogas production management systems. Bioprocess and Biosystems Engineering, 43(1), 45–54. https://doi.org/10.1007/s00449-019-02203-9

Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., & Fukuda, K. (2008). Effects of Cellulose Crystallinity, Hemicellulose, and Lignin on the Enzymatic Hydrolysis of Miscanthus sinensis to Monosaccharides. Bioscience, Biotechnology, and Biochemistry, 72(3), 805–810. https://doi.org/10.1271/BBB.70689

Zhang, H., Zhang, P., Ye, J., Wu, Y., Fang, W., Gou, X., & Zeng, G. (2016). Improvement of methane production from rice straw with rumen fluid pretreatment: A feasibility study. International Biodeterioration and Biodegradation, 113, 9–16. https://doi.org/10.1016/j.ibiod.2016.03.022

Zhao, K., Li, Y., Zhou, Y., Guo, W., Jiang, H., & Xu, Q. (2018). Characterization of hydrothermal carbonization products (hydrochars and spent liquor) and their biomethane production performance. Bioresource Technology, 267, 9–16. https://doi.org/10.1016/J.BIORTECH.2018.07.006

Zhao, P., Shen, Y., Ge, S., & Yoshikawa, K. (2014). Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization. Energy Conversion and Management, 78, 815–821. https://doi.org/10.1016/J.ENCONMAN.2013.11.026

Zhu, Z., Liu, Z., Zhang, Y., Li, B., Lu, H., Duan, N., Si, B., Shen, R., & Lu, J. (2016). Recovery of reducing sugars and volatile fatty acids from cornstalk at different hydrothermal treatment severity. Bioresource Technology, 199, 220–227. https://doi.org/10.1016/J.BIORTECH.2015.08.043

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る