リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Analogue signaling of somatodendritic synaptic activity to axon enhances GABA release in young cerebellar molecular layer interneurons」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Analogue signaling of somatodendritic synaptic activity to axon enhances GABA release in young cerebellar molecular layer interneurons

Trigo, Federico Kawaguchi, Shin-ya 京都大学 DOI:10.7554/eLife.85971

2023.08.11

概要

Axons are equipped with the digital signaling capacity by which they generate and faithfully propagate action potentials (APs), and also with the analogue signaling capacity by which subthreshold activity in dendrites and soma is transmitted down the axon. Despite intense work, the extent and physiological role for subthreshold synaptic activity reaching the presynaptic boutons has remained elusive because of the technical limitation to record from them. To address this issue, we made simultaneous patch-clamp recordings from the presynaptic varicosities of cerebellar GABAergic interneurons together with their parent soma or postsynaptic target cells in young rat slices and/or primary cultures. Our tour-de-force direct functional dissection indicates that the somatodendritic spontaneous excitatory synaptic potentials are transmitted down the axon for significant distances, depolarizing presynaptic boutons. These analogously transmitted excitatory synaptic potentials augment presynaptic Ca⁺⁺ influx upon arrival of an immediately following AP through a mechanism that involves a voltage-dependent priming of the Ca⁺⁺ channels, leading to an increase in GABA release, without any modification in the presynaptic AP waveform or residual Ca⁺⁺. Our work highlights the role of the axon in synaptic integration.

この論文で使われている画像

参考文献

Alle H, Geiger JRP. 2006. Combined analog and action potential coding in hippocampal mossy fibers. Science

311:1290–1293. DOI: https://doi.org/10.1126/science.1119055, PMID: 16513983

Alle H, Kubota H, Geiger JRP. 2011. Sparse but highly efficient Kv3 outpace BKCa channels in action potential

repolarization at hippocampal mossy fiber boutons The Journal of Neuroscience 31:8001–8012. DOI: https://​

doi.org/10.1523/JNEUROSCI.0972-11.2011, PMID: 21632922

Ango F, di Cristo G, Higashiyama H, Bennett V, Wu P, Huang ZJ. 2004. Ankyrin-­based subcellular gradient of

neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment

Cell 119:257–272. DOI: https://doi.org/10.1016/j.cell.2004.10.004, PMID: 15479642

Begum R, Bakiri Y, Volynski KE, Kullmann DM. 2016. Action potential broadening in a presynaptic

channelopathy Nature Communications 7:12102. DOI: https://doi.org/10.1038/ncomms12102, PMID:

27381274

Blanchard K, Zorrilla de San Martín J, Marty A, Llano I, Trigo FF. 2020. Differentially poised vesicles underlie fast

and slow components of release at single synapses The Journal of General Physiology 152:e201912523. DOI:

https://doi.org/10.1085/jgp.201912523, PMID: 32243497

Blot A, Barbour B. 2014. Ultra-­rapid axon-­axon ephaptic inhibition of cerebellar Purkinje cells by the pinceau

Nature Neuroscience 17:289–295. DOI: https://doi.org/10.1038/nn.3624, PMID: 24413696

Borst JG, Sakmann B. 1999. Effect of changes in action potential shape on calcium currents and transmitter

release in a calyx-­type synapse of the rat auditory brainstem Philosophical Transactions of the Royal Society of

London. Series B, Biological Sciences 354:347–355. DOI: https://doi.org/10.1098/rstb.1999.0386, PMID:

10212483

Boudkkazi S, Fronzaroli-­Molinieres L, Debanne D. 2011. Presynaptic action potential waveform determines

cortical synaptic latency. The Journal of Physiology 589:1117–1131. DOI: https://doi.org/10.1113/jphysiol.​

2010.199653, PMID: 21224227

Bouhours B, Trigo FF, Marty A. 2011. Somatic depolarization enhances GABA release in cerebellar interneurons

via a calcium/protein kinase C pathway. The Journal of Neuroscience 31:5804–5815. DOI: https://doi.org/10.​

1523/JNEUROSCI.5127-10.2011, PMID: 21490222

Bucher D, Goaillard JM. 2011. Beyond faithful conduction: short-­term dynamics, neuromodulation, and long-­

term regulation of spike propagation in the axon. Progress in Neurobiology 94:307–346. DOI: https://doi.org/​

10.1016/j.pneurobio.2011.06.001, PMID: 21708220

Canepari M, Nelson L, Papageorgiou G, Corrie JE, Ogden D. 2001. Photochemical and pharmacological

evaluation of 7-­nitroindolinyl-­and 4-­methoxy-­7-­nitroindolinyl-­amino acids as novel, fast caged neurotransmitters

Journal of Neuroscience Methods 112:29–42. DOI: https://doi.org/10.1016/s0165-0270(01)00451-4, PMID:

11640955

Carta M, Lanore F, Rebola N, Szabo Z, Da Silva SV, Lourenço J, Verraes A, Nadler A, Schultz C, Blanchet C,

Mulle C. 2014. Membrane lipids tune synaptic transmission by direct modulation of presynaptic potassium

channels. Neuron 81:787–799. DOI: https://doi.org/10.1016/j.neuron.2013.12.028, PMID: 24486086

Chattopadhyaya B, Di Cristo G, Wu CZ, Knott G, Kuhlman S, Fu Y, Palmiter RD, Huang ZJ. 2007. GAD67-­

mediated GABA synthesis and signaling regulate inhibitory synaptic Innervation in the visual cortex. Neuron

54:889–903. DOI: https://doi.org/10.1016/j.neuron.2007.05.015, PMID: 17582330

Christie JM, Chiu DN, Jahr CE. 2011. Ca(2+)-­dependent enhancement of release by subthreshold somatic

depolarization. Nature Neuroscience 14:62–68. DOI: https://doi.org/10.1038/nn.2718, PMID: 21170054

Coombs JS, Eccles JC, Fatt P. 1955. The electrical properties of the motoneurone membrane. The Journal of

Physiology 130:291–325. DOI: https://doi.org/10.1113/jphysiol.1955.sp005411

Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G. 2011. Axon physiology. Physiological Reviews

91:555–602. DOI: https://doi.org/10.1152/physrev.00048.2009, PMID: 21527732

de San Martin JZ, Jalil A, Trigo FF. 2015. Impact of single-­site axonal GABAergic synaptic events on cerebellar

interneuron activity. The Journal of General Physiology 146:477–493. DOI: https://doi.org/10.1085/jgp.​

201511506, PMID: 26621773

Geiger JR, Jonas P. 2000. Dynamic control of presynaptic Ca(2+) inflow by fast-­inactivating K(+) channels in

hippocampal mossy fiber boutons Neuron 28:927–939. DOI: https://doi.org/10.1016/s0896-6273(00)00164-1,

PMID: 11163277

Glitsch M, Marty A. 1999. Presynaptic effects of NMDA in cerebellar Purkinje cells and interneurons. The Journal

of Neuroscience 19:511–519. DOI: https://doi.org/10.1523/JNEUROSCI.19-02-00511.1999, PMID: 9880571

Goaillard JM, Moubarak E, Tapia M, Tell F. 2019. Diversity of axonal and dendritic contributions to neuronal

output. Frontiers in Cellular Neuroscience 13:570. DOI: https://doi.org/10.3389/fncel.2019.00570, PMID:

32038171

Trigo and Kawaguchi. eLife 2023;12:e85971. DOI: https://doi.org/10.7554/eLife.85971

22 of 24

Neuroscience

Research article

Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. 1981. Improved patch-­clamp techniques for high-­

resolution current recording from cells and cell-­free membrane patches. Pflugers Archiv 391:85–100. DOI:

https://doi.org/10.1007/BF00656997, PMID: 6270629

Heidelberger R. 2007. Mechanisms of tonic, graded release: lessons from the vertebrate photoreceptor. The

Journal of Physiology 585:663–667. DOI: https://doi.org/10.1113/jphysiol.2007.137927, PMID: 17584835

Hering S, Zangerl-­Plessl EM, Beyl S, Hohaus A, Andranovits S, Timin EN. 2018. Calcium channel gating. Pflugers

Archiv 470:1291–1309. DOI: https://doi.org/10.1007/s00424-018-2163-7, PMID: 29951751

Huang ZJ, Di Cristo G, Ango F. 2007. Development of GABA Innervation in the cerebral and cerebellar cortices.

Nature Reviews. Neuroscience 8:673–686. DOI: https://doi.org/10.1038/nrn2188, PMID: 17704810

Kawaguchi S, Hirano T. 2007. Sustained structural change of GABA(A) receptor-­associated protein underlies

long-­term potentiation at inhibitory synapses on a cerebellar Purkinje neuron. The Journal of Neuroscience

27:6788–6799. DOI: https://doi.org/10.1523/JNEUROSCI.1981-07.2007, PMID: 17581966

Kawaguchi S, Sakaba T. 2015. Control of inhibitory synaptic outputs by low excitability of axon terminals

revealed by direct recording. Neuron 85:1273–1288. DOI: https://doi.org/10.1016/j.neuron.2015.02.013,

PMID: 25728570

Kawaguchi SY, Sakaba T. 2017. Fast Ca2+ buffer-­dependent reliable but plastic transmission at small CNS

synapses revealed by direct bouton recording. Cell Reports 21:3338–3345. DOI: https://doi.org/10.1016/j.​

celrep.2017.11.072, PMID: 29262314

Li L, Bischofberger J, Jonas PDG. 2007. N-, and R-­type Ca2+ channels in hippocampal mossy fiber boutons. The

Journal of Neuroscience 27:13420–13429. DOI: https://doi.org/10.1523/JNEUROSCI.1709-07.2007

Llinás RR. 1988. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous

system function. Science 242:1654–1664. DOI: https://doi.org/10.1126/science.3059497, PMID: 3059497

Paradiso K, Wu LG. 2009. Small voltage changes at nerve terminals travel up axons to affect action potential

initiation. Nature Neuroscience 12:541–543. DOI: https://doi.org/10.1038/nn.2301, PMID: 19349974

Pouzat C, Marty A. 1999. Somatic recording of GABAergic autoreceptor current in cerebellar stellate and basket

cells. The Journal of Neuroscience 19:1675–1690. DOI: https://doi.org/10.1523/JNEUROSCI.19-05-01675.​

1999, PMID: 10024354

Rall W. 1969. Distributions of potential in cylindrical coordinates and time constants for a membrane cylinder.

Biophysical Journal 9:1509–1541. DOI: https://doi.org/10.1016/S0006-3495(69)86468-4, PMID: 5352229

Ritzau-­Jost A, Tsintsadze T, Krueger M, Ader J, Bechmann I, Eilers J, Barbour B, Smith SM, Hallermann S. 2021.

Large, stable spikes exhibit differential broadening in excitatory and inhibitory neocortical boutons. Cell

Reports 34:108612. DOI: https://doi.org/10.1016/j.celrep.2020.108612, PMID: 33440142

Rowan MJM, DelCanto G, Yu JJ, Kamasawa N, Christie JM. 2016. Synapse-­level determination of action

potential duration by K(+) channel clustering in axons. Neuron 91:370–383. DOI: https://doi.org/10.1016/j.​

neuron.2016.05.035, PMID: 27346528

Rowan MJM, Christie JM. 2017. Rapid state-­dependent alteration in KV3 channel availability drives flexible

synaptic signaling dependent on somatic subthreshold depolarization. Cell Reports 18:2018–2029. DOI:

https://doi.org/10.1016/j.celrep.2017.01.068, PMID: 28228266

Sabatini BL, Regehr WG. 1997. Control of neurotransmitter release by presynaptic waveform at the granule cell

to Purkinje cell synapse The Journal of Neuroscience 17:3425–3435. DOI: https://doi.org/10.1523/JNEUROSCI.​

17-10-03425.1997, PMID: 9133368

Schindelin J, Arganda-­Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,

Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-­source

platform for biological-­image analysis. Nature Methods 9:676–682. DOI: https://doi.org/10.1038/nmeth.2019,

PMID: 22743772

Scott R, Ruiz A, Henneberger C, Kullmann DM, Rusakov DA. 2008. Analog modulation of mossy fiber

transmission is uncoupled from changes in presynaptic Ca2+. The Journal of Neuroscience 28:7765–7773. DOI:

https://doi.org/10.1523/JNEUROSCI.1296-08.2008, PMID: 18667608

Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA. 2006. Modulation of intracortical synaptic potentials by

presynaptic somatic membrane potential. Nature 441:761–765. DOI: https://doi.org/10.1038/nature04720,

PMID: 16625207

Southan AP, Robertson B. 1998. Patch-­clamp recordings from cerebellar basket cell bodies and their presynaptic

terminals reveal an asymmetric distribution of voltage-­gated potassium channels. The Journal of Neuroscience

18:948–955. DOI: https://doi.org/10.1523/JNEUROSCI.18-03-00948.1998, PMID: 9437016

Southan AP, Morris NP, Stephens GJ, Robertson B. 2000. Hyperpolarization-­activated currents in presynaptic

terminals of mouse cerebellar basket cells. The Journal of Physiology 526 Pt 1:91–97. DOI: https://doi.org/10.​

1111/j.1469-7793.2000.t01-1-00091.x, PMID: 10878102

Southan AP, Robertson B. 2000. Electrophysiological characterization of voltage-­gated K(+) currents in

cerebellar basket and purkinje cells: Kv1 and Kv3 channel subfamilies are present in basket cell nerve terminals

The Journal of Neuroscience 20:114–122. DOI: https://doi.org/10.1523/JNEUROSCI.20-01-00114.2000, PMID:

10627587

Taschenberger H, von Gersdorff H. 2000. Fine-­tuning an auditory synapse for speed and fidelity: developmental

changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity The Journal of Neuroscience 20:9162–

9173. DOI: https://doi.org/10.1523/JNEUROSCI.20-24-09162.2000, PMID: 11124994

Thome C, Roth FC, Obermayer J, Yanez A, Draguhn A, Egorov AV. 2018. Synaptic entrainment of ectopic action

potential generation in hippocampal pyramidal neurons. The Journal of Physiology 596:5237–5249. DOI:

https://doi.org/10.1113/JP276720, PMID: 30144079

Trigo and Kawaguchi. eLife 2023;12:e85971. DOI: https://doi.org/10.7554/eLife.85971

23 of 24

Neuroscience

Research article

Trigo FF, Chat M, Marty A. 2007. Enhancement of GABA release through endogenous activation of axonal

GABA(A) receptors in juvenile cerebellum. The Journal of Neuroscience 27:12452–12463. DOI: https://doi.org/​

10.1523/JNEUROSCI.3413-07.2007, PMID: 18003823

Trigo FF, Corrie JET, Ogden D. 2009. Laser photolysis of caged compounds at 405 nm: photochemical

advantages, localisation, phototoxicity and methods for calibration Journal of Neuroscience Methods 180:9–

21. DOI: https://doi.org/10.1016/j.jneumeth.2009.01.032, PMID: 19427524

Trigo FF, Bouhours B, Rostaing P, Papageorgiou G, Corrie JET, Triller A, Ogden D, Marty A. 2010. Presynaptic

miniature GABAergic currents in developing interneurons. Neuron 66:235–247. DOI: https://doi.org/10.1016/j.​

neuron.2010.03.030, PMID: 20435000

Trigo FF. 2019. Antidromic analog signaling. Frontiers in Cellular Neuroscience 13:354. DOI: https://doi.org/10.​

3389/fncel.2019.00354, PMID: 31427929

Yang YM, Wang W, Fedchyshyn MJ, Zhou Z, Ding J, Wang LY. 2014. Enhancing the fidelity of neurotransmission

by activity-­dependent facilitation of presynaptic potassium currents. Nature Communications 5:4564. DOI:

https://doi.org/10.1038/ncomms5564, PMID: 25078759

Zbili M, Debanne D. 2019. Past and future of analog-­digital modulation of synaptic transmission. Frontiers in

Cellular Neuroscience 13:160. DOI: https://doi.org/10.3389/fncel.2019.00160, PMID: 31105529

Trigo and Kawaguchi. eLife 2023;12:e85971. DOI: https://doi.org/10.7554/eLife.85971

24 of 24

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る