リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Motion Response and Energy Conversion Performance of a Heaving Point Absorber Wave Energy Converter」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Motion Response and Energy Conversion Performance of a Heaving Point Absorber Wave Energy Converter

Zhou, Bin-zhen Hu, Jian-jian Sun, Ke Liu, Yingyi 劉, 盈溢 リュウ, インイ Collu, Maurizio 九州大学

2020.09.29

概要

The heaving wave energy converter (WEC) is one typical type of point absorber WECs with high energy conversion efficiency but significantly affected by the viscous effect. It is widely known that the

この論文で使われている画像

参考文献

Bacelli, G., Balitsky, P., and Ringwood, J. V. (2013). Coordinated control of arrays

of wave energy devices-benefits over independent control. IEEE Trans. Sustain.

Energy 4, 1091–1099. doi:10.1109/tste.2013.2267961

Chen, Z. F., Zhou, B. Z., Zhang, L., Li, C., Zang, J., Zheng, X., et al. (2018a).

Experimental and numerical study on a novel dual-resonance wave energy

converter with a built-in power take-off system. Energy 165, 1008–1020. doi:10.

1016/j.energy.2018.09.094

Chen, Z. F., Zhou, B. Z., Zhang, L., Zhang, W. C., Wang, S. Q., and Zang, J. (2018b).

Geometrical evaluation on the viscous effect of point-absorber wave-energy

Frontiers in Energy Research | www.frontiersin.org

11

September 2020 | Volume 8 | Article 553295

Zhou et al.

Energy Conversion Performance of WEC

He, F., Huang, Z. H., and Law, A. W.-K. (2013). An experimental study of a floating

breakwater with asymmetric pneumatic chambers for wave energy extraction.

Appl. Energy 106, 222–231. doi:10.1016/j.apor.2017.06.009

He, F., Zhang, H. S., Zhao, J. J., Zheng, S. M., and Iglesias, G. (2019). Hydrodynamic

performance of a pile-supported OWC breakwater: an analytical study. Appl.

Ocean Res. 88, 326–340. doi:10.1016/j.apor.2019.03.022

Hu, J., Zhou, B., Vogel, C., Liu, P., Willden, R., and Sun, K. (2020). Optimal design

and performance analysis of a hybrid system combing a floating wind platform

and wave energy converters. Appl. Energy 269, 114998. doi:10.1016/j.apenergy.

2020.114998

Jin, S., and Patton, R. (2017). “Geometry influence on hydrodynamic response of a

heaving point absorber wave energy converter,” in European Wave and Tidal

Energy Conference, Southampton, UK.

Khojasteh, D., and Kamali, R. (2016). Evaluation of wave energy absorption by

heaving point absorbers at various hot spots in Iran seas. Energy 109, 629–640.

doi:10.1016/j.energy.2016.05.054

Lee, H., Poguluri, S., and Bae, Y. (2018). Performance analysis of multiple wave

energy converters placed on a floating platform in the frequency domain.

Energies 11, 406. doi:10.3390/en11020406

Li, Y., and Yu, Y. H. (2012). A synthesis of numerical methods for modeling wave

energy converter-point absorbers. Renew. Sust. Energy Rev. 16, 4352–4364.

doi:10.1016/j.rser.2011.11.008

McCabe, A. P., and Aggidis, G. A. (2009). Optimum mean power output of a pointabsorber wave energy converter in irregular waves. P. I. Mech. Eng. A.-J. Pow.

223, 773–781. doi:10.1243/09576509JPE751

Ning, D. Z., Wang, R. Q., Chen, L.F., and Sun, K. (2019). Experimental

investigation of a land-based dual-chamber OWC wave energy converter.

Renew. Sust. Energy Rev. 105, 48–60. doi:10.1016/j.rser.2019.01.043

Penesis, I., Manasseh, R., Nader, J. R., De Chowdhury, S., and Fleming, A. (1998).

“Performance of ocean wave-energy arrays in Australia,” in 3rd Asian wave and

tidal energy conference, Marina Bay Sands, Singapore, October 25-27.

Shi, H., Huang, S., and Cao, F. (2019). Hydrodynamic performance and power

absorption of a multi-freedom buoy wave energy device. Ocean. Eng.. 172,

541–549. doi:10.1016/j.oceaneng.2018.12.005

Son, D., Belissen, V., and Yeung, R. W. (2016). Performance validation and

optimization of a dual coaxial-cylinder ocean-wave energy extractor. Renew.

Energy 92, 192–201. doi:10.1016/j.renene.2016.01.032

Sun, S.-y., Sun, S.-l., and Wu, G.-x. (2018). Fully nonlinear time domain analysis for

Hydrodynamic performance of an oscillating wave surge converter. China

Ocean Eng. 32, 582–592. doi:10.1007/s13344-018-0060-7

Teng, B., Gou, Y., Wang, G., and Cao, G. (2014). “Motion response of hinged

multiple floating bodies on local seabed,” in Proceedings of the 24th

Frontiers in Energy Research | www.frontiersin.org

International Society of Offshore and Polar Engineers, Busan, Korea, June

15-20.

Teng, B., and Taylor, R. E. (1995). New higher-order boundary element methods

for wave diffraction/radiation. Appl. Ocean Res. 17, 71–77. doi:10.1016/01411187(95)00007-N

Tom, N. M. (2013). Design and control of a floating wave-energy converter

utilizing a permanent magnet linear generator. Ph.D. thesis. Berkeley, CA:

University of California,

Wang, R. Q., Ning, D. Z., Zhang, C. W., Zou, Q. P., and Liu, Z. (2018).

Nonlinear and viscous effects on the hydrodynamic performance of a fixed

OWC wave energy converter. Coast. Eng. 131, 42–50. doi:10.1016/j.

coastaleng.2017.10.012

Weber, J., Mouwen, F., Parish, A., and Robertson, D. (2009). “Wavebob—research

& development network and tools in the context of systems engineering,” in

Proceedings of the eighth European wave and tidal energy conference, Uppsala,

Sweden, September 7-10.

Zhang, H., Zhou, B., Vogel, C., Willden, R., Zang, J., and Geng, J. (2020a).

Hydrodynamic performance of a dual-floater hybrid system combining a

floating breakwater and an oscillating-buoy type wave energy converter.

Appl. Energy 259, 114212. doi:10.1016/j.apenergy.2019.114212

Zhang, H., Zhou, B., Vogel, C., Willden, R., Zang, J., and Zhang, L. (2020b).

Hydrodynamic performance of a floating breakwater as an oscillating-buoy

type wave energy converter. Appl. Energy 257, 113996. doi:10.1016/j.apenergy.

2019.113996

Zhang, L., Guo, W., and Wang, S. Q. (2015). Hydrodynamic performance

optimization of a point absorber. J. Harbin Inst. Technol. 47, 117–121.

doi:10.11918/j.issn.0367-6234.2015.07.019

Zhang, W.-c., Liu, H.-x., Zhang, L., and Zhang, X.-w. (2016). Hydrodynamic analysis

and shape optimization for vertical axisymmetric wave energy converters. China

Ocean Eng. 30, 954–966. doi:10.1007/s13344-016-0062-2

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Zhou, Hu, Sun, Liu and Collu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with

these terms.

12

September 2020 | Volume 8 | Article 553295

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る