リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Ultrafast olivine-ringwoodite transformation during shock compression」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Ultrafast olivine-ringwoodite transformation during shock compression

Okuchi, Takuo Seto, Yusuke Tomioka, Naotaka Matsuoka, Takeshi Albertazzi, Bruno Hartley, Nicholas J. Inubushi, Yuichi Katagiri, Kento Kodama, Ryosuke Pikuz, Tatiana A. Purevjav, Narangoo Miyanishi, Kohei Sato, Tomoko Sekine, Toshimori Sueda, Keiichi Tanaka, Kazuo A. Tange, Yoshinori Togashi, Tadashi Umeda, Yuhei Yabuuchi, Toshinori Yabashi, Makina Ozaki, Norimasa 京都大学 DOI:10.1038/s41467-021-24633-4

2021

概要

Meteorites from interplanetary space often include high-pressure polymorphs of their constituent minerals, which provide records of past hypervelocity collisions. These collisions were expected to occur between kilometre-sized asteroids, generating transient high-pressure states lasting for several seconds to facilitate mineral transformations across the relevant phase boundaries. However, their mechanisms in such a short timescale were never experimentally evaluated and remained speculative. Here, we show a nanosecond transformation mechanism yielding ringwoodite, which is the most typical high-pressure mineral in meteorites. An olivine crystal was shock-compressed by a focused high-power laser pulse, and the transformation was time-resolved by femtosecond diffractometry using an X-ray free electron laser. Our results show the formation of ringwoodite through a faster, diffusionless process, suggesting that ringwoodite can form from collisions between much smaller bodies, such as metre to submetre-sized asteroids, at common relative velocities. Even nominally unshocked meteorites could therefore contain signatures of high-pressure states from past collisions.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

Brearley, A. J. & Jones, R. H. Chondritic meteorites in Planetary Materials

(Papike, J. J. ed.) 3-001-3-398 (Mineralogical Society of America, Chantilly,

VA, 1998).

Messenger, S. et al. Samples of stars beyond the solar system: silicate grains in

interplanetary dust. Science 300, 105–108 (2003).

Nakamura, T. et al. Itokawa dust particles: a direct link between S-type

asteroids and ordinary chondrites. Science 333, 1113–1116 (2011).

Tsuchiyama, A. et al. Three-dimensional structure of Hayabusa samples:

origin and evolution of Itokawa regolith. Science 333, 1125–1128 (2011).

Ringwood, A. E. Composition and Petrology of the Earth’s Mantle (McGrawHill, New York, 1975).

33.

34.

35.

ARTICLE

Akaogi, M., Ito, E. & Navrotsky, A. Olivine-modified spinel-spinel transitions

in the system Mg2SiO4-Fe2SiO4: calorimetric measurements, thermochemical

calculation, and geophysical application. J. Geophys. Res. Solid Earth 94,

15671–15685 (1989).

Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite

included within diamond. Nature 507, 221–224 (2014).

Gillet, P. & El Goresy, A. Shock events in the solar system: the message from

minerals in terrestrial planets and asteroids. Annu. Rev. Earth Planet. Sci. 41,

257–285 (2013).

Tomioka, N. & Miyahara, M. High-pressure minerals in shocked meteorites.

Meteorit. Planet. Sci. 52, 2017–2039 (2017).

Binns, R. A., Davis, R. J. & Reed, S. J. B. Ringwoodite, natural (Mg,Fe)2SiO4

spinel in the Tenham meteorite. Nature 221, 943–944 (1969).

Beck, P., Gillet, P., El Goresy, A. & Mostefaoui, S. Timescales of shock processes

in chondritic and martian meteorites. Nature 435, 1071–1074 (2005).

Ohtani, E. et al. Formation of high-pressure minerals in shocked L6 chondrite

Yamato 791384: constraints on shock conditions and parent body size. Earth

Planet. Sci. Lett. 227, 505–515 (2004).

Chen, M., El Goresy, A. & Gillet, P. Ringwoodite lamellae in olivine: clues to

olivine–ringwoodite phase transition mechanisms in shocked meteorites and

subducting slabs. Proc. Natl Acad. Sci. U. S. A. 101, 15033–15037 (2004).

Miyahara, M. et al. Coherent and subsequent incoherent ringwoodite growth

in olivine of shocked L6 chondrites. Earth Planet. Sci. Lett. 295, 321–327

(2010).

Tomioka, N. & Okuchi, T. A new high-pressure form of Mg2SiO4 highlighting

diffusionless phase transitions of olivine. Sci. Rep. 7, 17351 (2017).

Tomioka, N. et al. Poirierite, a dense metastable polymorph of magnesium

iron silicate in shocked meteorites. Commun. Earth. Environ. 2, 16 (2021).

Madon, M. & Poirier, J. P. Transmission electron microscope observation of

alpha, beta and gamma (Mg, Fe)2SiO4 in shocked meteorites: planar defects

and polymorphic transitions. Phys. Earth Planet Int. 33, 31–44 (1983).

Xie, Z., Sharp, T. G. & DeCarli, P. S. High-pressure phases in a shock-induced

melt vein of the Tenham L6 chondrite: Constraints on shock pressure and

duration. Geochim. Cosmochim. Acta 70, 504–515 (2006).

Tschauner, O. et al. Ultrafast growth of wadsleyite in shock-produced melts

and its implications for early solar system impact processes. Proc. Natl Acad.

Sci. U.S.A. 106, 13691–13695 (2009).

Sekine, T. et al. Shock compression response of forsterite above 250 GPa. Sci.

Adv. 2, e1600157 (2016).

Root, S. et al. The principal Hugoniot of forsterite to 950 GPa. Geophys. Res.

Lett. 45, 3865–3872 (2018).

Millot, M. et al. Recreating giants impacts in the laboratory: shock

compression of bridgmanite to 14 Mbar. Geophys. Res. Lett. 47,

e2019GL085476 (2020).

Gleason, A. E. et al. Ultrafast visualization of crystallization and grain growth

in shock-compressed SiO2. Nat. Commun. 6, 8191 (2015).

Syono, Y., Goto, T., Sato, J. & Takei, H. Shock compression measurements of

single-crystal forsterite in the pressure range 15–93 GPa. J. Geophys. Res. Solid

Earth 86, 6181–6186 (1981).

Watt, J. P. & Ahrens, T. J. Shock compression of single-crystal forsterite. J.

Geophys. Res. Solid Earth 88, 9500–9512 (1983).

Poirier, J. P. Martensitic olivine-spinel transformation and plasticity of the

mantle transition zone in Anelasticity in the Earth (eds. Stacey, F. D., Paterson,

M. S. & Nicholas, A.) 113–117 (American Geophysical Union, Washington

DC, 1981).

Putnis, A. Introduction to Mineral Sciences (Cambridge University Press, 1992).

Burnley, P. C. The fate of olivine in subducting slabs: a reconnaissance study.

Am. Mineral. 80, 1293–1301 (1995).

Boland, J. N. & Liu, L. G. Olivine to spinel transformation in Mg2SiO4 via

faulted structures. Nature 303, 233–235 (1983).

Kerschhofer, L., Sharp, T. G. & Rubie, D. C. Intracrystalline transformation of

olivine to wadsleyite and ringwoodite under subduction zone conditions.

Science 274, 79–81 (1996).

Xie, Z. & Sharp, T. G. Host rock solid-state transformation in a shock-induced

melt vein of Tenham L6 chondrite. Earth Planet. Sci. Lett. 254, 433–445 (2007).

Chen, M. et al. The majorite-pyrope + magnesiowüstite assemblage:

constraints on the history of shock veins in chondrites. Science 271,

1570–1573 (1996).

Miyahara, M. et al. Evidence for fractional crystallization of wadsleyite and

ringwoodite from olivine melts in chondrules entrained in shock-melt veins.

Proc. Natl Acad. Sci. U.S.A. 105, 8542–8547 (2008).

Poirier, J. P. The kinetics of martensitic olivine-spinel transition and its

dependence on material and experimental parameters. in High Pressure

Research in Geophysics (eds. Akimoto, S. & Manghnani, M. H.) 361–371

(Springer, Netherlands, 1982).

Li, S. & Hsu, W. The nature of the L chondrite parent body’s disruption as

deduced from high-pressure phases in the Sixiangkou L6 chondrite. Meteorit.

Planet. Sci. 53, 2107–2121 (2018).

NATURE COMMUNICATIONS | (2021)12:4305 | https://doi.org/10.1038/s41467-021-24633-4 | www.nature.com/naturecommunications

ARTICLE

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24633-4

36. Kelly, P. M. & Rose, L. R. F. The martensitic transformation in ceramics - its

role in transformation toughening. Prog. Mater. Sci. 47, 463–557 (2002).

37. Hannink, R. H. J., Kelly, P. M. & Muddle, B. C. Transformation toughening in

zirconia-containing ceramics. J. Am. Ceram. Soc. 83, 461–487 (2000).

38. Zhu, S. C., Guan, S. H. & Liu, Z. P. Mechanism and microstructures in Ga2O3

pseudomartensitic solid phase transition. Phys. Chem. Chem. Phys. 18,

18563–18574 (2016).

39. Kishimura, H. & Matsumoto, H. Evaluation of the shock-induced phase

transition in β-Ga2O3. Jpn. J. Appl. Phys. 57, 125503 (2018).

40. Ozawa, S. et al. Transformation textures, mechanisms of formation of highpressure minerals in shock melt veins of L6 chondrites, and pressuretemperature conditions of the shock events. Meteorit. Planet. Sci. 44,

1771–1786 (2009).

41. Johnson, B. C. et al. Timing of the formation and migration of giant planets as

constrained by CB chondrites. Sci. Adv. 2, e1601658 (2016).

42. Stöffler, D., Keil, K. & Scott, E. R. D. Shock metamorphism of ordinary

chondrites. Geochim. Cosmochim. Acta 55, 3845–3867 (1991).

43. Stöffler, D., Hamann, C. & Metzler, K. Shock metamorphism of planetary

silicate rocks and sediments: proposal for an updated classification system.

Meteorit. Planet. Sci. 53, 5–49 (2018).

44. Zhang, F. & Sekine, T. Impact-shock behavior of Mg- and Ca-sulfates and

their hydrates. Geochim. Cosmochim. Acta 71, 4125–4133 (2007).

45. Bottke, W. F., Nolan, M. C., Greenberg, R. & Kolvoord, R. A. Velocity

distributions among colliding asteroids. Icarus 107, 255–268 (1994).

46. Fujiwara, A. et al. The rubble-pile asteroid Itokawa as observed by Hayabusa.

Science 312, 1330–1334 (2006).

47. Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the subångström region. Nat. Photon. 6, 540–544 (2012).

48. Ramis, R., Schmalz, R. & Meyer-Ter-Vehn, J. MULTI—a computer code for

one-dimensional multigroup radiation hydrodynamics. Comput. Phys.

Commun. 49, 475–505 (1988).

49. Inubushi, Y. et al. Determination of the pulse duration of an X-ray free

electron laser using highly resolved single-shot spectra. Phys. Rev. Lett. 109,

144801 (2012).

50. Hartley, N. J. et al. Ultrafast observation of lattice dynamics in laser-irradiated

gold foils. Appl. Phys. Lett. 110, 071905 (2017).

51. Albertazzi, B. et al. Dynamic fracture of tantalum under extreme tensile stress.

Sci. Adv. 3, e1602705 (2017).

52. Kameshima, T. et al. Development of an X-ray pixel detector with multi-port

charge-coupled device for X-ray free-electron laser experiments. Rev. Sci.

Instrum. 85, 033110 (2014).

53. The software code is available at https://github.com/seto77/IPanalyzer/

54. The software code is available at https://github.com/seto77/ReciPro/

55. Horiuchi, H. & Sawamoto, H. β-Mg2SiO4: single-crystal X-ray diffraction

study. Am. Mineral. 66, 568–575 (1981).

56. Meng, Y. et al. Hydrostatic compression of γ-Mg2SiO4 to mantle pressures

and 700 K: thermal equation of state and related thermoelastic properties.

Phys. Chem. Miner. 21, 407–412 (1994).

57. Andrault, D., Bouhifd, M. A., Itié, J. P. & Richet, P. Compression and

amorphization of (Mg,Fe)2SiO4 olivines: an X-ray diffraction study up to 70

GPa. Phys. Chem. Miner. 22, 99–107 (1995).

58. Finkelstein, G. J. et al. Phase transitions and equation of state of forsterite to

90 GPa from single-crystal X-ray diffraction and molecular modeling. Am.

Mineral. 99, 35–43 (1994).

Acknowledgements

The diffraction experiments and their preparation works were conducted with the approval

of the Japan Synchrotron Radiation Research Institute. SACLA research proposals:

2019B8032 (complementary use with J-PARC/MLF), 2019A8036 (complementary use with

J-PARC/MLF), 2018A8036, 2018B8039, 2018A8033, 2017B8051, 2017B8080, 2016B8083,

2016B8084, and 2016A8065. SPring-8 research proposal: 2016A1128. This work was supported in part by KAKENHI (grant nos. 20K20947, 20H01965, 17H01172 and 16H02246)

from the Japan Society for the Promotion of Science (JSPS), and X-ray Free Electron Laser

Priority Strategy Programme (contract 12005014 at Osaka University and 12005064 at

Okayama University) and Quantum Leap Flagship Programme (JPMXS0118067246) from

the Ministry of Education, Culture, Sports, Science, and Technology.

Author contributions

T.O., N.T. and N.O. designed the research. T.O., Y.S., N.T., T.M., B.A., N.J.H., Y.I., K.K.,

R.K., T.A.P., N.P., K.M., T.S., T.S., K.S., K.A.T., Y.T., T.T., Y.U., T.Y., M.Y. and N.O.

participated in preparing or conducting the experiments. T.O. analysed the diffraction

data using the software developed by Y.S. T.O., Y.S., N.T., T.M., B.A., N.J.H., Y.I., K.K.,

R.K., T.A.P., N.P., K.M., T.S., T.S., K.S., K.A.T., Y.T., T.T., Y.U., T.Y., M.Y. and N.O.

participated in discussing results. T.O., Y.S. and N.T. wrote the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s41467-021-24633-4.

Correspondence and requests for materials should be addressed to T.O.

Peer review information Nature Communications thanks the anonymous reviewers for

their contribution to the peer review of this work

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | (2021)12:4305 | https://doi.org/10.1038/s41467-021-24633-4 | www.nature.com/naturecommunications

...

参考文献をもっと見る