リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Poirierite, a dense metastable polymorph of magnesium iron silicate in shocked meteorites」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Poirierite, a dense metastable polymorph of magnesium iron silicate in shocked meteorites

Tomioka, Naotaka Bindi, Luca Okuchi, Takuo Miyahara, Masaaki Iitaka, Toshiaki Li, Zhi Kawatsu, Tsutomu Xie, Xiande Purevjav, Narangoo Tani, Riho Kodama, Yu 京都大学 DOI:10.1038/s43247-020-00090-7

2021.01.22

概要

A dense magnesium iron silicate polymorph with a structure intermediate between olivine, ringwoodite, and wadsleyite was theoretically predicted about four decades ago. As this group of minerals constitute the major component of shocked meteorites, constraining their transitional forms and behaviour is of potential importance for understanding impact events on their parent bodies. Here we use high-resolution transmission electron microscopy techniques and single-crystal X-ray diffraction analyses to identify naturally occurring examples of this mineral – recently named poirierite – in shocked chondritic meteorites. We observe nanoscale lamellar poirierite topotactically intergrown within wadsleyite, and additionally within ringwoodite as recently reported. Our results confirm the intermediate structure of poirierite and suggest it might be a relay point in the shear transformations between its polymorphs. We propose that poirierite formed during rapid decompression at relatively low temperature in retrograde shock metamorphism of the meteorites.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

First-principles calculations. The first-principles calculations based on the density

functional theory (DFT) on poirierite and the known Mg2SiO4 polymorphs were

performed using the Quantum Espresso code52. The crystal structure of poirierite at

0 K was optimised using the Perdew–Burke–Ernzerhof (PBE) exchange-correlation

density functional and norm-conserving pesudopotentials53 with an energy cutoff

of 120.0 Ry with 12 × 20 × 8 k-point grids where space group is Pmma. The

parameters (lattice parameters and atomic positions) of the poirierite structure

16.

17.

Ito, E. & Katsura, T. A temperature profile of the mantle transition zone.

Geophys. Res. Lett. 16, 425–428 (1989).

Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite

included within diamond. Nature 507, 221–224 (2014).

Tomioka, N. & Miyahara, M. High-pressure minerals in shocked meteorites.

Meteorit. Planet. Sci. 52, 2017–2039 (2017).

Binns, R. A., Davis, R. J. & Reed, S. J. B. Ringwoodite, natural (Mg,

Fe)2SiO4 spinel in the Tenham meteorite. Nature 221, 943–944 (1969).

Price, G. D., Putnis, A., Agrell, S. O. & Smith, D. G. W. Wadsleyite, natural β(Mg,Fe)2SiO4 from the Peace River meteorite. Canad. Mineral. 21, 29–53 (1983).

Ma, C. et al. Ahrensite, γ-Fe2SiO4, a new shock-metamorphic mineral from

the Tissint meteorite: Implications for the Tissint shock event on Mars.

Geochim. Cosmochim. Acta 184, 240–256 (2016).

Bindi, L. et al. Discovery of asimowite, the Fe-analog of wadsleyite, in shockmelted silicate droplets of the Suizhou L6 and the Quebrada Chimborazo 001

CB3.0 chondrites. Amer. Mineral. 104, 775–778 (2019).

Xie, Z. & Sharp, T. G. Host rock solid-state transformation in a shock-induced

melt vein of Tenham L6 chondrite. Earth Planet. Sci. Lett. 254, 433–445 (2007).

Miyahara, M. et al. Evidence for fractional crystallization of wadsleyite and

ringwoodite from olivine melts in chondrules entrained in shock-melt veins.

Proc. Natl. Acad. Sci. USA 105, 8542–8547 (2008).

Feng, L., Lin, Y., Hu, S., Xu, L. & Miao, B. Estimating compositions of natural

ringwoodite in the heavily shocked Grove Mountains 052049 meteorite from

Raman spectra. Amer. Mineral. 96, 1480–1489 (2011).

Xie, Z., Li, X., Sharp, T. G. & De Carli, P. S. Shock-induced ringwoodite rims

around olivine fragments in melt vein of Antarctic chondrite GRV022321:

transformation mechanism. In 43rd Lunar and Planetary Science Conf.

https://www.lpi.usra.edu/meetings/lpsc2012/pdf/2776.pdf (2012).

Pittarello, L. et al. From olivine to ringwoodite: a TEM study of a complex

process. Meteorit. Planet. Sci. 50, 944–957 (2015).

Xie, Z., Sharp, T. G. & De Carli, P. Estimating shock pressures based on highpressure minerals in shock-induced melt veins of L chondrites. Meteorit.

Planet. Sci. 41, 1883–1898 (2006).

Ohtani, E. et al. Formation of high-pressure minerals in shocked L6 chondrite

Yamato 791384: constraints on shock conditions and parent body size. Earth

Planet. Sci. Lett. 227, 505–515 (2004).

Miyahara, M. et al. Coherent and subsequent incoherent ringwoodite growth in

olivine of shocked L6 chondrites. Earth Planet. Sci. Lett. 295, 321–327 (2010).

Madon, M. & Poirier, J. P. Dislocations in spinel and garnet high-pressure

polymorphs of olivine and pyroxene: implications for mantle rheology. Science

207, 66–68 (1980).

Madon, M. & Poirier, J. P. Transmission electron microscope observation of α,

β and γ (Mg, Fe)2SiO4 in shocked meteorites: planar defects and polymorphic

transitions. Phys. Earth Planet. Inter. 33, 31–44 (1983).

COMMUNICATIONS EARTH & ENVIRONMENT | (2021)2:16 | https://doi.org/10.1038/s43247-020-00090-7 | www.nature.com/commsenv

ARTICLE

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-020-00090-7

18. Price, G. D. The nature and significance of stacking faults in wadsleyite,

natural □-(Mg,Fe)2SiO4 from the Peace River meteorite. Phys. Earth Planet.

Inter. 33, 137–147 (1983).

19. Tomioka, N. & Okuchi, T. A new high-pressure form of Mg2SiO4 highlighting

diffusionless phase transitions of olivine. Sci. Rep. 7, 17351 (2017).

20. Langenhorst, F., Joreau, P. & Doukhan, J. C. Thermal and shock

metamorphism of the Tenham chondrite: a TEM examination. Geochim.

Cosmochim. Acta 59, 1835–1845 (1995).

21. Xie, Z., Sharp, T. G. & DeCarli, P. S. High-pressure phases in a shock-induced

melt vein of the Tenham L6 chondrite: Constraints on shock pressure and

duration. Geochim. Cosmochim. Acta 70, 504–515 (2006).

22. Hyde, B. G., White, T. J., O’Keeffe, M. & Johnson, A. W. S. Structures related

to those of spinel and the β-phase, and a possible mechanism for the

transformation olivine ↔ spinel. Z. Kristallogr. 160, 53–62 (1982).

23. Robinson, K., Gibbs, G. V. & Ribbe, P. H. Quadratic elongation: a

quantitative measure of distortion in coordination polyhedra. Science 172,

567–570 (1971).

24. Burnley, P. C. The fate of olivine in subductings labs: a reconnaissance study.

Amer. Mineral. 80, 1293–1301 (1995).

25. Price, G. D., Putnis, A. & Smith, D. G. W. A spinel to β-phase transformation

mechanism in (Mg,Fe)2SiO4. Nature 296, 729–731 (1982).

26. Brearley, A. J., Rubie, D. C. & Ito, E. Mechanisms of the transformations

between the α, β, γ polymorphs of Mg2SiO4 at 15 GPa. Phys. Chem. Miner. 18,

343–358 (1992).

27. Boland, J. N. & Liu, L. G. Olivine to spinel transformation in Mg2SiO4 via

faulted structures. Nature 303, 233–235 (1983).

28. Burnley, P. C. & Green II, H. W. Stress dependence of the mechanism of the

olivine–spinel transformation. Nature 338, 753–756 (1989).

29. Kerschhofer, L., Sharp, T. G. & Rubie, D. C. Intracrystalline transformation of

olivine to wadsleyite and ringwoodite under subduction zone conditions.

Science 274, 79–81 (1996).

30. Kerschhofer, L. et al. Polymorphic transformations between olivine, wadsleyite

and ringwoodite: mechanisms of intracrystalline nucleation and the role of

elastic strain. Mineral. Mag. 62, 617–638 (1998).

31. Poirier, J. P. Martensitic olivine-spinel transformation and plasticity of the

mantle transition zone. In Anelasticity in the Earth, Vol. 4 (eds Stacey, F. D.,

Paterson, M. S. & Nicholas, A.) 113–117 (American Geophysical Union,

Washington, D. C., 1981).

32. Tomioka, N., Miyahara, M. & Ito, M. Discovery of natural MgSiO3 tetragonal

garnet in a shocked chondritic meteorite. Sci. Adv. 2, e1501725 (2016).

33. Fujino, K., Sasaki, S., Takeuchi, Y. & Sadanaga, R. X-ray determination of

electron distributions in forsterite, fayalite and tephroite. Acta Crystallogr.

B37, 513–518 (1981).

34. Finger, L. W., Hazen, R. M., Zhang, J., Ko, J. & Navrotsky, A. The effect of Fe

on the crystal structure of wadsleyite β-(Mg1-xFex)2SiO4, 0.00 < x < 0.40. Phys.

Chem. Miner. 19, 361–368 (1993).

35. Sasaki, S., Prewitt, C. T., Sato, Y. & Ito, E. Single-crystal X ray study of γ

Mg2SiO4. J. Geophys. Res. 87, 7829–7832 (1982).

36. Yagi, T., Marumo, F. & Akimoto, S. Crystal structures of spinel polymorphs of

Fe2SiO4 and Ni2SiO4. Amer. Mineral. 59, 486–490 (1974).

37. Okuchi, T. et al. Linking occurrence and texture of dense silicate minerals in

shocked meteorites with laser-shock experimental results of Mg2SiO4 analyzed

by XFEL probe. In Japan Geosecience Union Meeting 2019. https://confit.atlas.jp/

guide/event-img/jpgu2019/PCG22-04/public/pdf?type=in (2019).

38. Ma, C., Tschauner, O., Bindi, L., Beckett, J. R. & Xie, X. A vacancy-rich,

partially inverted spinelloid silicate, (Mg,Fe,Si)2(Si,□)O4, as a major matrix

phase in shock melt veins of the Tenham and Suizhou L6 chondrites. Meteorit.

Planet. Sci. 54, 1907–1918 (2019).

39. Ma, C., Tschauner, O. & Beckett, J. R. Discovery of a new high-pressure

silicate phase, (Fe,Mg,Cr,Ti,Ca,□)2(Si,Al)O4 with a tetragonal spinelloid

structure, in a shock melt pocket from the Tissint Martian meteorite. In 50th

Lunar and Planetary Science Conf. https://www.hou.usra.edu/meetings/

lpsc2019/pdf/1460.pdf (2019).

40. Katsura, T. & Ito, E. The system Mg2SiO4-Fe2SiO4 at high pressures and

temperatures: precise determination of stabilities of olivine, modified spinel,

and spinel. J. Geophys. Res. 94, 15663–15670 (1989).

41. Putnis, A. & Price, G. High-pressure (Mg,Fe)2SiO4 phases in the Tenham

chondritic meteorite. Nature 280, 217–218 (1979).

42. Tomioka, N. & Fujino, K. Natural (Mg,Fe)SiO3-ilmenite and -perovskite in the

Tenham meteorite. Science 277, 1084–1086 (1997).

43. Tomioka, N., Mori, H. & Fujino, K. Shock-induced transition of NaAlSi3O8

feldspar into a hollandite structure in a L6 chondrite. Geophys. Res. Lett. 27,

3997–4000 (2000).

44. Tomioka, N. & Kimura, M. The breakdown of diopside to Ca-rich majorite

and glass in a shocked H chondrite. Earth Planet. Sci. Lett. 208, 271–278

(2003).

45. Chen, M., Shu, J. & Mao, H.-K. Xieite, a new mineral of high-pressure

FeCr2O4 polymorph. Chin. Sci. Bull. 53, 3341–3345 (2008).

46. Xie, X., Sun, Z. & Chen, M. The distinct morphological and petrological

features of shock melt veins in the Suizhou L6 chondrite. Meteorit. Planet. Sci

46, 459–469 (2011).

47. Bindi, L., Chen, M. & Xie, X. Discovery of the Fe-analogue of akimotoite in the

shocked Suizhou L6 chondrite. Sci. Rep. 7, 42674 (2017).

48. Bindi, L., Shim, S.-H., Sharp, T. G. & Xie, X. Evidence for the charge

disproportionation of iron in extraterrestrial bridgmanite. Sci. Adv. 6,

eaay7893 (2020).

49. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr A64, 112–122 (2008).

50. Hazen, R. M., Downs, R. T., Finger, L. W. & Ko, J. Crystal chemistry of

ferromagnesian silicate spinels: evidence for Mg-Si disorder. Amer. Mineral.

78, 1320–1323 (1993).

51. Ibers, J. A. & Hamilton, W. C. International Tables for X-ray Crystallography.

Vol. 4 (Kynoch Press, 1974).

52. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source

software project for quantum simulations of materials. J. Phys.: Condens.

Matter. 21, 395502 (2009).

53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation

made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

54. Horiuchi, H. & Sawamoto, H. β-Mg2SiO4: Single-crystal X-ray diffraction

study. Amer. Mineral. 66, 568–575 (1981).

Acknowledgements

The authors are grateful to Y. Seto and K. Fujino for the discussion on the transformation

mechanisms between olivine polymorphs, and to R. Miyawaki for his helpful suggestions on

the new mineral proposal of poirierite to the International Mineralogical Association. The

authors also thank the Head Office for Information Systems and Cybersecurity, RIKEN, for a

generous grant of computing time on the Hokusai BigWaterfall Cluster. This work was

supported by a Grant-in-Aid for Scientific Research by the Ministry of Education, Culture,

Sports, Science and Technology (MEXT) (No. 15H03750 to N.T. and 17H01172 to T.O.)

and the Strategic Fund for Strengthening Leading-Edge Research and Development provided

by the Japan Society for the Promotion of Science (to JAMSTEC). This research was also

supported by MEXT as part of the “Exploratory Challenge on Post-K computer” (Challenge

of Basic Science – Exploring Extremes through Multi-Physics and Multi-Scale Simulations).

Author contributions

N.T. organised the research project. N.T., M.M., L.B., X.X., R.T., and Y.K. conducted SEM

observations, and N.T., R.T., and Y.K. prepared ultrathin foil specimens via FIB. N.T., and

M.M. conducted the TEM observations. N.T., T.O., and N.P. conducted electron diffraction

analysis and crystal structure modelling. L.B. conducted single crystal X-ray diffraction

analysis and crystal structure refinements. T.I., Z.L., and T.K., conducted the first-principles

calculations. N.T. wrote the paper and all the authors discussed the results and commented

on the paper.

Competing interests

The authors declare that they have no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s43247020-00090-7.

Correspondence and requests for materials should be addressed to N.T.

Peer review information: Primary handling editor: Joe Aslin.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS EARTH & ENVIRONMENT | (2021)2:16 | https://doi.org/10.1038/s43247-020-00090-7 | www.nature.com/commsenv

...

参考文献をもっと見る