リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Myh9 R702C is associated with erythroid abnormality with splenomegaly in mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Myh9 R702C is associated with erythroid abnormality with splenomegaly in mice

Kanematsu, Takeshi Suzuki, Nobuaki Tamura, Shogo Suzuki, Atsuo Ishikawa, Yuichi Katsumi, Akira Kiyoi, Hitoshi Saito, Hidehiko Kunishima, Shinji Kojima, Tetsuhito Matsushita, Tadashi 名古屋大学

2021.02

概要

Myh9 disorders are characterized by giant platelets, thrombocytopenia, and Döhle body-like cytoplasmic inclusion bodies in granulocytes. However, whether these disorders cause any changes in erythroid cells has yet to be determined. This study analyzed the influence of Myh9 R702C, as one of the most commonly detected Myh9 disorders, on erythroid cells in a mouse model.

Knock-in mice expressing Myh9 R702C mutation either systemically or specific to hematological cells (R702C and R702C vav1 mice, respectively) were used in this study. Both displayed lower hemoglobin and higher erythropoietin levels than wild-type (WT) mice, along with significant splenomegaly. Flow cytometric analysis revealed erythroblasts present at a higher rate than WT mice in the spleen. However, no obvious abnormalities were seen in erythroid differentiation from megakaryocyte/erythroid progenitor to erythrocyte. Cell culture assay by fetal liver and colony assay also showed normal progression of erythroid differentiation from erythroid burst-forming unit to red blood cell.

In conclusion, R702C and R702C vav1 mice displayed erythroid abnormality with splenomegaly. However, erythroid differentiation showed no obvious abnormality. Further research is required to elucidate the underlying mechanisms.

この論文で使われている画像

参考文献

1 Kunishima S, Kojima T, Matsushita T, et al. Mutations in the NMMHC-A gene cause autosomal dominant macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly/Sebastian syndrome). Blood. 2001;97(4):1147–1149. doi:10.1182/blood.v97.4.1147.

2 Seri M, Cusano R, Gangarossa S, et al. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium. Nat Genet. 2000;26(1):103–105. doi:10.1038/79063.

3 Kelley MJ, Jawien W, Ortel TL, Korczak JF. Mutation of MYH9, encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly. Nat Genet. 2000;26(1):106–108. doi:10.1038/79069.

4 Shin JW, Buxboim A, Spinler KR, et al. Contractile forces sustain and polarize hematopoiesis from stem and progenitor cells. Cell stem Cell. 2014;14(1):81–93. doi:10.1016/j.stem.2013.10.009.

5 Keerthivasan G, Small S, Liu H, Wickrema A, Crispino JD. Vesicle trafficking plays a novel role in erythroblast enucleation. Blood. 2010;116(17):3331–3340. doi:10.1182/blood-2010-03-277426.

6 Ng MM, Chang F, Burgess DR. Movement of membrane domains and requirement of membrane signaling molecules for cytokinesis. Dev Cell. 2005;9(6):781–790. doi:10.1016/j.devcel.2005.11.002.

7 Keerthivasan G, Wickrema A, Crispino JD. Erythroblast enucleation. Stem Cells Int. 2011;2011:139851. doi:10.4061/2011/139851.

8 Ubukawa K, Guo YM, Takahashi M, et al. Enucleation of human erythroblasts involves non-muscle myosin IIB. Blood. 2012;119(4):1036–1044. doi:10.1182/blood-2011-06-361907.

9 Smith AS, Nowak RB, Zhou S, et al. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability. Proc Natl Acad Sci U S A. 2018;115(19):E4377– E4385. doi:10.1073/pnas.1718285115.

10 Smith AS, Pal K, Nowak RB, et al. MYH9-related disease mutations cause abnormal red blood cell morphology through increased myosin-actin binding at the membrane. Am J Hematol. 2019;94(6):667–677. doi:10.1002/ajh.25472.

11 Kunishima S, Yoshinari M, Nishio H, et al. Haematological characteristics of MYH9 disorders due to MYH9 R702 mutations. Eur J Haematol. 2007;78(3):220–226. doi:10.1111/j.1600-0609.2006.00806.x.

12 Pecci A, Panza E, Pujol-Moix N, et al. Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9-related disease. Hum Mutat. 2008;29(3):409–417. doi:10.1002/ humu.20661.

13 Sekine T, Konno M, Sasaki S, et al. Patients with Epstein-Fechtner syndromes owing to MYH9 R702 mutations develop progressive proteinuric renal disease. Kidney Int. 2010;78(2):207–214. doi:10.1038/ ki.2010.21.

14 Suzuki N, Kunishima S, Ikejiri M, et al. Establishment of Mouse Model of MYH9 Disorders: Heterozygous R702C Mutation Provokes Macrothrombocytopenia with Leukocyte Inclusion Bodies, Renal Glomerulosclerosis and Hearing Disability. PLoS One. 2013;8(8):e71187. doi:10.1371/journal.pone.0071187.

15 Liu J, Zhang J, Ginzburg Y, et al. Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis. Blood. 2013;121(8):e43–e49. doi:10.1182/ blood-2012-09-456079.

16 Zhang J, Socolovsky M, Gross AW, Lodish HF. Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood. 2003;102(12):3938–3946. doi:10.1182/blood-2003-05-1479.

17 Pronk CJ, Rossi DJ, Mansson R, et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell. 2007;1(4):428–442. doi:10.1016/j. stem.2007.07.005.

18 Moura PL, Hawley BR, Mankelow TJ, et al. Non-muscle Myosin II drives vesicle loss during human reticulocyte maturation. Haematologica. 2018;103(12):1997–2007. doi:10.3324/haematol.2018.199083.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る