リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A proteome signature of umbilical cord serum associated with congenital diaphragmatic hernia」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A proteome signature of umbilical cord serum associated with congenital diaphragmatic hernia

Tachi, Asuka Moriyama, Yoshinori Tsuda, Hiroyuki Miki, Rika Ushida, Takafumi Miura, Mayo Ito, Yumiko Imai, Kenji Nakano-Kobayashi, Tomoko Hayakawa, Masahiro Kikkawa, Fumitaka Kotani, Tomomi 名古屋大学

2020.05

概要

Congenital diaphragmatic hernia (CDH) is a congenital anomaly characterized by a defect in the diaphragm. Despite the recent improvements in its treatment, CDH is associated with a high rate of neonatal mortality, which is often related to pulmonary hypoplasia (PH) as well as pulmonary hypertension. A better understanding of the underlying pathological mechanisms of PH in CDH could help establish a new treatment to improve its prognosis. In this study, we investigated serum biological profiles in neonates with CDH. For comprehensive investigation, umbilical cord serum samples were collected from isolated CDH cases (n = 4) and matched healthy controls (n = 4). Samples were analyzed using liquid chromatography–tandem mass spectrometry. A total of 697 proteins were detected; of them, 98 were identified as differentially expressed proteins. Among these differentially expressed proteins, complement C1q subcomponent showed the largest fold change, followed by complement C5. In the pathway enrichment analysis, the complement and coagulation cascades expressed the most significant enrichment (p = 2.4 × 10^−26). Thus, the complement pathway might play some role in the pathophysiology of CDH.

この論文で使われている画像

参考文献

1. Garne E, Haeusler M, Barisic I, et al. Congenital diaphragmatic hernia: evaluation of prenatal diagnosis in

20 European regions. Ultrasound Obstet Gynecol. 2002;19(4):329–333.

2. Montalva L, Antounians L, Zani A. Pulmonary hypertension secondary to congenital diaphragmatic hernia:

factors and pathways involved in pulmonary vascular remodeling. Pediatr Res. 2019;85(6):754–768.

3. Friedmacher F, Pakarinen MP, Rintala RJ. Congenital diaphragmatic hernia: a scientometric analysis of the

global research activity and collaborative networks. Pediatr Surg Int. 2018;34(9):907–917.

4. Spaggiari E, Stirnemann JJ, Sonigo P, Khen-Dunlop N, De Saint Blanquat L, Ville Y. Prenatal prediction of pulmonary arterial hypertension in congenital diaphragmatic hernia. Ultrasound Obstet Gynecol.

2015;45(5):572–577.

5. Abman SH, Hansmann G, Archer SL, et al. Pediatric pulmonary hypertension guidelines from the American

Heart Association and American Thoracic Society. Circulation. 2015;132(21):2037–2099.

6. McHoney M, Hammond P. Role of ECMO in congenital diaphragmatic hernia. Arch Dis Child-Fetal

Neonatal Ed. 2018;103(2):F178-F181.

7. Saura L, Castanon M, Prat J, et al. Impact of fetal intervention on postnatal management of congenital

diaphragmatic. Eur J Pediatr Surg. 2007;17(6):404–407.

8. Araujo Junior E, Tonni G, Martins WP, Ruano R. Procedure-related complications and survival following

Fetoscopic Endotracheal Occlusion (FETO) for severe congenital diaphragmatic hernia: systematic review

and meta-analysis in the FETO Era. Eur J Pediatr Surg. 2017;27(4):297–305.

9. Sluiter I, Reiss I, Kraemer U, de Krijger R, Tibboel D, Rottier RJ. Vascular abnormalities in human

newborns with pulmonary hypertension. Expert Rev Respir Med. 2011;5(2):245–256.

10. Mous DS, Buscop-van Kempen MJ, Wijnen RMH, Tibboel D, Rottier RJ. Changes in vasoactive pathways

in congenital diaphragmatic hernia associated pulmonary hypertension explain unresponsiveness to pharmacotherapy. Respir Res. 2017;18(1):187.

11. Mizuno M, Miki R, Moriyama Y, et al. The role of E2F8 in the human placenta. Mol Med Rep.

2019;19(1):293–301.

12. Moriyama Y, Kotani T, Ushida T, et al. Altered proteomic profile in umbilical arterial serum from mothers

with schizophrenia. Schizophr Res. 2018;197:615–617.

13. Pan HT, Guo MX, Xiong YM, et al. Differential proteomic analysis of umbilical artery tissue from preeclampsia patients, using iTRAQ isobaric tags and 2D nano LC-MS/MS. J Proteomics. 2015;112:262–273.

14. Karasinski J, Wrobel K, Corrales Escobosa AR, Konopka A, Bulska E, Wrobel K. Allium cepa L. Response

to sodium selenite (Se(IV)) studied in plant roots by a LC-MS-based proteomic approach. J Agric Food

Chem. 2017;65(19):3995–4004.

15. Ramirez Segovia AS, Wrobel K, Acevedo Aguilar FJ, Corrales Escobosa AR, Wrobel K. Effect of Cu(ii)

354

Asuka Tachi et al

16. 17. 18. 19. 20. 21. 22. 23. 24. on in vitro glycation of human serum albumin by methylglyoxal: a LC-MS-based proteomic approach.

Metallomics. 2017;9(2):132–140.

Queloz PA, Crettaz D, Thadikkaran L, et al. Proteomic analyses of amniotic fluid: potential applications

in health and diseases. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;850(1-2):336–342.

Kononikhin AS, Starodubtseva NL, Chagovets VV, et al. Exhaled breath condensate analysis from intubated

newborns by nano-HPLC coupled to high resolution MS. J Chromatogr B Analyt Technol Biomed Life Sci.

2017;1047:97–105.

Santos M, Moura RS, Gonzaga S, Nogueira-Silva C, Ohlmeier S, Correia-Pinto J. Embryonic essential

myosin light chain regulates fetal lung development in rats. Am J Respir Cell Mol Biol. 2007;37(3):330–338.

Peiro JL, Oria M, Aydin E, et al. Proteomic profiling of tracheal fluid in an ovine model of congenital

diaphragmatic hernia and fetal tracheal occlusion. Am J Physiol Lung Cell Mol Physiol. 2018;315(6):L1028L1041.

Cheung AK, Parker CJ, Wilcox L. Effects of two types of cobra venom factor on porcine complement

activation and pulmonary artery pressure. Clin Exp Immunol. 1989;78(2):299–306.

Yao L, Yang YX, He GH, Ou CQ, Wang L, Liu KX. Global proteomics deciphered novel-function of

osthole against pulmonary arterial hypertension. Scientific Reports. 2018;8:13.

Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML, et al. Genomic assessment of a multikinase

inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics. 2008;33(2):278–291.

Sumida T, Naito AT, Nomura S, et al. Complement C1q-induced activation of beta-catenin signalling causes

hypertensive arterial remodelling. Nat Commun. 2015;6:12.

Bauer EM, Zheng H, Comhair S, Erzurum S, Billiar TR, Bauer PM. Complement C3 deficiency attenuates

chronic hypoxia-induced pulmonary hypertension in mice. PLoS One. 2011;6(12):e28578.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る