リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ATG16L1 negatively regulates RICK/RIP2-mediated innate immune responses」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ATG16L1 negatively regulates RICK/RIP2-mediated innate immune responses

本庶 元 近畿大学

2023.01.12

概要

Polymorphisms in the autophagy-related protein 16 like 1 (ATG16L1) and nucleotide-binding oligomerization domain 2 (NOD2) genes are associated with Crohn’s disease (CD). Impaired interaction between ATG16L1 and NOD2 underlies CD immunopathogenesis. Although activation of the receptor-interacting serine/threonine kinase (RICK, also known as RIP2), a downstream signaling molecule for NOD2 and multiple toll-like receptors (TLRs), plays a pathogenic role in the development of inflammatory bowel disease, the molecular interaction between ATG16L1 and RICK/RIP2 remains poorly understood. In this study, we examined the physical interaction between ATG16L1 and RICK/RIP2 in human embryonic kidney 293 (HEK293) cells and human monocyte-derived dendritic cells (DCs) expressing excessive and endogenous levels of these proteins, respectively. We established that ATG16L1 binds to RICK/RIP2 kinase domain and negatively regulates TLR2-mediated nuclear factor-kappa B (NF-kB) activation and proinflammatory cytokine responses by inhibiting the interaction between TLR2 and RICK/RIP2. Binding of ATG16L1 to RICK/RIP2 suppressed NF-kB activation by downregulating RICK/RIP2 polyubiquitination. Notably, the percentage of colonic DCs expressing ATG16L1 inversely correlated with IL-6 and TNF-a expression levels in the colon of CD patients. These data suggest that the interaction between ATG16L1 and RICK/RIP2 maintains intestinal homeostasis via the downregulation of TLR-mediated proinflammatory cytokine responses.

参考文献

1. Mizushima, N., Levine, B., Cuervo, A. M., and Klionsky, D. J. 2008. Autophagy fights disease through cellular self-digestion. Nature 451:1069.

2. Virgin, H. W. and Levine, B. 2009. Autophagy genes in immunity. Nat Immunol 10:461.

3. Rabinowitz, J. D. and White, E. 2010. Autophagy and metabolism. Science 330:1344.

4. Qi, Y. Y., Zhou, X. J., and Zhang, H. 2019. Autophagy and immunological aberrations in systemic lupus erythematosus. Eur J Immunol 49:523.

5. Salem, M., Ammitzboell, M., Nys, K., Seidelin, J. B., and Nielsen, O. H. 2015. ATG16L1: A multifunctional susceptibility factor in Crohn disease. Autophagy 11:585.

6. Cho, J. H. 2008. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 8:458.

7. Kuballa, P., Huett, A., Rioux, J. D., Daly, M. J., and Xavier, R. J. 2008. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS One 3:e3391.

8. Murthy, A., Li, Y., Peng, I., Reichelt, M., Katakam, A. K., Noubade, R., Roose-Girma, M., DeVoss, J., Diehl, L., Graham, R. R., and van Lookeren Campagne, M. 2014. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 506:456.

9. Strober, W., Murray, P. J., Kitani, A., and Watanabe, T. 2006. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6:9.

10. Strober, W., Fuss, I., and Mannon, P. 2007. The fundamental basis of inflammatory bowel disease. J Clin Invest 117:514.

11. Strober, W., Asano, N., Fuss, I., Kitani, A., and Watanabe, T. 2014. Cellular and molecular mechanisms underlying NOD2 risk-associated polymorphisms in Crohn's disease. Immunol Rev 260:249.

12. Strober, W. and Watanabe, T. 2011. NOD2, an intracellular innate immune sensor involved in host defense and Crohn's disease. Mucosal Immunol 4:484.

13. Caruso, R., Lo, B. C., and Nunez, G. 2020. Hostmicrobiota interactions in inflammatory bowel disease. Nat Rev Immunol 20:411.

14. Travassos, L. H., Carneiro, L. A., Ramjeet, M., Hussey, S., Kim, Y. G., Magalhaes, J. G., Yuan, L., Soares, F., Chea, E., Le Bourhis, L., Boneca, I. G., Allaoui, A., Jones, N. L., Nunez, G., Girardin, S. E., and Philpott, D. J. 2010. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11:55.

15. Cooney, R., Baker, J., Brain, O., Danis, B., Pichulik, T., Allan, P., Ferguson, D. J., Campbell, B. J., Jewell, D., and Simmons, A. 2010. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16:90.

16. Watanabe, T., Asano, N., Murray, P. J., Ozato, K., Tailor, P., Fuss, I. J., Kitani, A., and Strober, W. 2008. Muramyl dipeptide activation of nucleotidebinding oligomerization domain 2 protects mice from experimental colitis. J Clin Invest 118:545.

17. Watanabe, T., Asano, N., Meng, G., Yamashita, K., Arai, Y., Sakurai, T., Kudo, M., Fuss, I. J., Kitani, A., Shimosegawa, T., Chiba, T., and Strober, W. 2014. NOD2 downregulates colonic inflammation by IRF4-mediated inhibition of K63- linked polyubiquitination of RICK and TRAF6. Mucosal Immunol 7:1312.

18. Hasegawa, M., Fujimoto, Y., Lucas, P. C., Nakano, H., Fukase, K., Nunez, G., and Inohara, N. 2008. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J 27:373.

19. Kobayashi, K., Inohara, N., Hernandez, L. D., Galan, J. E., Nunez, G., Janeway, C. A., Medzhitov, R., and Flavell, R. A. 2002. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416:194.

20. Usluoglu, N., Pavlovic, J., Moelling, K., and Radziwill, G. 2007. RIP2 mediates LPS-induced p38 and IkappaBalpha signaling including IL-12 p40 expression in human monocyte-derived dendritic cells. Eur J Immunol 37:2317.

21. Lu, C., Wang, A., Dorsch, M., Tian, J., Nagashima, K., Coyle, A. J., Jaffee, B., Ocain, T. D., and Xu, Y. 2005. Participation of Rip2 in lipopolysaccharide signaling is independent of its kinase activity. J Biol Chem 280:16278.

22. Watanabe, T., Minaga, K., Kamata, K., Sakurai, T., Komeda, Y., Nagai, T., Kitani, A., Tajima, M., Fuss, I. J., Kudo, M., and Strober, W. 2019. RICK/RIP2 is a NOD2-independent nodal point of gut inflammation. Int Immunol 31:669.

23. Hollenbach, E., Neumann, M., Vieth, M., Roessner, A., Malfertheiner, P., and Naumann, M. 2004. Inhibition of p38 MAP kinase- and RICK/NF-kappaB-signaling suppresses inflammatory bowel disease. FASEB J 18:1550.

24. Hollenbach, E., Vieth, M., Roessner, A., Neumann, M., Malfertheiner, P., and Naumann, M. 2005. Inhibition of RICK/nuclear factor-kappaB and p38 signaling attenuates the inflammatory response in a murine model of Crohn disease. J Biol Chem 280:14981.

25. Haile, P. A., Votta, B. J., Marquis, R. W., Bury, M. J., Mehlmann, J. F., Singhaus, R., Jr., Charnley, A. K., Lakdawala, A. S., Convery, M. A., Lipshutz, D. B., Desai, B. M., Swift, B., Capriotti, C. A., Berger, S. B., Mahajan, M. K., Reilly, M. A., Rivera, E. J., Sun, H. H., Nagilla, R., Beal, A. M., Finger, J. N., Cook, M. N., King, B. W., Ouellette, M. T., Totoritis, R. D., Pierdomenico, M., Negroni, A., Stronati, L., Cucchiara, S., Ziolkowski, B., Vossenkamper, A., MacDonald, T. T., Gough, P. J., Bertin, J., and Casillas, L. N. 2016. The Identification and Pharmacological Characterization of 6-(tert-Butylsulfonyl)-N-(5- fluoro-1H-indazol-3-yl)quinolin-4-amine (GSK583), a Highly Potent and Selective Inhibitor of RIP2 Kinase. J Med Chem 59:4867.

26. Tigno-Aranjuez, J. T., Benderitter, P., Rombouts, F., Deroose, F., Bai, X., Mattioli, B., Cominelli, F., Pizarro, T. T., Hoflack, J., and Abbott, D. W. 2014. In vivo inhibition of RIPK2 kinase alleviates inflammatory disease. J Biol Chem 289:29651.

27. Symington, J. W., Wang, C., Twentyman, J., Owusu-Boaitey, N., Schwendener, R., Nunez, G., Schilling, J. D., and Mysorekar, I. U. 2015. ATG16L1 deficiency in macrophages drives clearance of uropathogenic E. coli in an IL-1betadependent manner. Mucosal Immunol 8:1388.

28. Saitoh, T., Fujita, N., Jang, M. H., Uematsu, S., Yang, B. G., Satoh, T., Omori, H., Noda, T., Yamamoto, N., Komatsu, M., Tanaka, K., Kawai, T., Tsujimura, T., Takeuchi, O., Yoshimori, T., and Akira, S. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264.

29. Lassen, K. G., Kuballa, P., Conway, K. L., Patel, K. K., Becker, C. E., Peloquin, J. M., Villablanca, E. J., Norman, J. M., Liu, T. C., Heath, R. J., Becker, M. L., Fagbami, L., Horn, H., Mercer, J., Yilmaz, O. H., Jaffe, J. D., Shamji, A. F., Bhan, A. K., Carr, S. A., Daly, M. J., Virgin, H. W., Schreiber, S. L., Stappenbeck, T. S., and Xavier, R. J. 2014. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc Natl Acad Sci U S A 111:7741.

30. Plantinga, T. S., Crisan, T. O., Oosting, M., van de Veerdonk, F. L., de Jong, D. J., Philpott, D. J., van der Meer, J. W., Girardin, S. E., Joosten, L. A., and Netea, M. G. 2011. Crohn's diseaseassociated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut 60:1229.

31. Minaga, K., Watanabe, T., Arai, Y., Shiokawa, M., Hara, A., Yoshikawa, T., Kamata, K., Yamashita, K., and Kudo, M. 2020. Activation of interferon regulatory factor 7 in plasmacytoid dendritic cells promotes experimental autoimmune pancreatitis. J Gastroenterol 55:565.

32. Watanabe, T., Sadakane, Y., Yagama, N., Sakurai, T., Ezoe, H., Kudo, M., Chiba, T., and Strober, W. 2016. Nucleotide-binding oligomerization domain 1 acts in concert with the cholecystokinin receptor agonist, cerulein, to induce IL-33-dependent chronic pancreatitis. Mucosal Immunol 9:1234.

33. Watanabe, T., Kitani, A., Murray, P. J., Wakatsuki, Y., Fuss, I. J., and Strober, W. 2006. Nucleotide binding oligomerization domain 2 deficiency leads to dysregulated TLR2 signaling and induction of antigen-specific colitis. Immunity 25:473.

34. Borm, M. E., van Bodegraven, A. A., Mulder, C. J., Kraal, G., and Bouma, G. 2008. The effect of NOD2 activation on TLR2-mediated cytokine responses is dependent on activation dose and NOD2 genotype. Genes Immun 9:274.

35. Wullaert, A., Heyninck, K., Janssens, S., and Beyaert, R. 2006. Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Trends Immunol 27:533.

36. Bertrand, M. J., Doiron, K., Labbe, K., Korneluk, R. G., Barker, P. A., and Saleh, M. 2009. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30:789.

37. Yang, Y., Yin, C., Pandey, A., Abbott, D., Sassetti, C., and Kelliher, M. A. 2007. NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J Biol Chem 282:36223.

38. Ohtake, F., Saeki, Y., Ishido, S., Kanno, J., and Tanaka, K. 2016. The K48-K63 Branched Ubiquitin Chain Regulates NF-kappaB Signaling. Mol Cell 64:251.

39. Cavallari, J. F., Fullerton, M. D., Duggan, B. M., Foley, K. P., Denou, E., Smith, B. K., Desjardins, E. M., Henriksbo, B. D., Kim, K. J., Tuinema, B. R., Stearns, J. C., Prescott, D., Rosenstiel, P., Coombes, B. K., Steinberg, G. R., and Schertzer, J. D. 2017. Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4. Cell Metab 25:1063.

40. Udden, S. M. N., Peng, L., Gan, J. L., Shelton, J. M., Malter, J. S., Hooper, L. V., and Zaki, M. H. 2017. NOD2 Suppresses Colorectal Tumorigenesis via Downregulation of the TLR Pathways. Cell Rep 19:2756.

41. Yamazaki, K., Onouchi, Y., Takazoe, M., Kubo, M., Nakamura, Y., and Hata, A. 2007. Association analysis of genetic variants in IL23R, ATG16L1 and 5p13.1 loci with Crohn's disease in Japanese patients. J Hum Genet 52:575.

42. Hart, A. L., Al-Hassi, H. O., Rigby, R. J., Bell, S. J., Emmanuel, A. V., Knight, S. C., Kamm, M. A., and Stagg, A. J. 2005. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology 129:50.

43. Sorbara, M. T., Ellison, L. K., Ramjeet, M., Travassos, L. H., Jones, N. L., Girardin, S. E., and Philpott, D. J. 2013. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 39:858.

44. Vijay-Kumar, M., Sanders, C. J., Taylor, R. T., Kumar, A., Aitken, J. D., Sitaraman, S. V., Neish, A. S., Uematsu, S., Akira, S., Williams, I. R., and Gewirtz, A. T. 2007. Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 117:3909.

45. Katakura, K., Lee, J., Rachmilewitz, D., Li, G., Eckmann, L., and Raz, E.2005. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J Clin Invest 115:695.

46. Chu, H., Khosravi, A., Kusumawardhani, I. P., Kwon, A. H., Vasconcelos, A. C., Cunha, L. D., Mayer, A. E., Shen, Y., Wu, W. L., Kambal, A., Targan, S. R., Xavier, R. J., Ernst, P. B., Green, D. R., McGovern, D. P., Virgin, H. W., and Mazmanian, S. K. 2016. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352:1116.

47. Homer, C. R., Richmond, A. L., Rebert, N. A., Achkar, J. P., and McDonald, C. 2010. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 139:1630.

48. Hedl, M., Li, J., Cho, J. H., and Abraham, C. 2007. Chronic stimulation of Nod2 mediates tolerance to bacterial products. Proc Natl Acad Sci U S A 104:19440.

49. Zhang, H., Zheng, L., Chen, J., Fukata, M., Ichikawa, R., Shih, D. Q., and Zhang, X. 2017. The protection role of Atg16l1 in CD11c(+)dendritic cells in murine colitis. Immunobiology 222:831.

50. Lapaquette, P., Bringer, M. A., and DarfeuilleMichaud, A. 2012. Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased proinflammatory response. Cell Microbiol 14:791.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る