リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Malfunctioning CD106-positive, short-term hematopoietic stem cells trigger diabetic neuropathy in mice by cell fusion.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Malfunctioning CD106-positive, short-term hematopoietic stem cells trigger diabetic neuropathy in mice by cell fusion.

KATAGI Miwako 40732459 TERASHIMA Tomoya 40378485 OHASHI Natsuko 60816776 NAKAE Yuki 40638186 YAMADA Akane NAKAGAWA Takahiko 60641595 MIYAZAWA Itsuko 20649305 0000-0001-6310-7225 MAEGAWA Hiroshi 00209363 0000-0002-4611-8149 OKANO Junko 50447968 SUZUKI Yoshihisa 30243025 FUJINO Kazunori 70402716 EGUCHI Yutaka 00263054 KUSHIMA Ryoji 40252382 滋賀医科大学

2021.05.21

概要

Diabetic neuropathy is an incurable disease. We previously identified a mechanism by which aberrant bone marrow-derived cells (BMDCs) pathologically expressing proinsulin/TNF-α fuse with residential neurons to impair neuronal function. Here, we show that CD106-positive cells represent a significant fraction of short-term hematopoietic stem cells (ST-HSCs) that contribute to the development of diabetic neuropathy in mice. The important role for these cells is supported by the fact that transplantation of either whole HSCs or CD106-positive ST- HSCs from diabetic mice to non-diabetic mice produces diabetic neuronal dysfunction in the recipient mice via cell fusion. Furthermore, we show that transient episodic hyperglycemia produced by glucose injections leads to abnormal fusion of pathological ST-HSCs with residential neurons, reproducing neuropathy in nondiabetic mice. In conclusion, we have identified hyperglycemia-induced aberrant CD106-positive ST-HSCs underlie the develop- ment of diabetic neuropathy. Aberrant CD106-positive ST-HSCs constitute a novel ther- apeutic target for the treatment of diabetic neuropathy.

この論文で使われている画像

参考文献

1. Ogle, B. M., Cascalho, M. & Platt, J. L. Biological implications of cell fusion.Nat. Rev. Mol. Cell Biol. 6, 567–575 (2005).

2. Wassarman, P. M., Jovine, L. & Litscher, E. S. A profile of fertilization in mammals. Nat. Cell Biol. 3, E59–E64 (2001).

3. Clift, D. & Schuh, M. Restarting life: fertilization and the transition from meiosis to mitosis. Nat. Rev. Mol. Cell Biol. 14, 549–562 (2013).

4. Demonbreun, A. R., Biersmith, B. H. & McNally, E. M. Membrane fusion in muscle development and repair. Semin Cell Dev. Biol. 45, 48–56 (2015).

5. Quinn, M. E. et al. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat. Commun. 8, 15665 (2017).

6. Edwards, J. R. & Mundy, G. R. Advances in osteoclast biology: old findings and new insights from mouse models. Nat. Rev. Rheumatol. 7, 235–243 (2011).

7. Martens, S. & McMahon, H. T. Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol. 9, 543–556 (2008).

8. Saunders, B. M. & Britton, W. J. Life and death in the granuloma: immunopathology of tuberculosis. Immunol. Cell Biol. 85, 103–111 (2007).

9. Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968–973 (2003).

10. Nygren, J. M. et al. Myeloid and lymphoid contribution to non- haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat. Cell Biol. 10, 584–592 (2008).

11. Larizza, L., Schirrmacher, V. & Pflüger, E. Acquisition of high metastatic capacity after in vitro fusion of a nonmetastatic tumor line with a bone marrow-derived macrophage. J. Exp. Med. 160, 1579–1584 (1984).

12. Pawelek, J. M. & Chakraborty, A. K. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat. Rev. Cancer 8, 377–386 (2008).

13. Terashima, T. et al. The fusion of bone-marrow-derived proinsulin-expressing cells with nerve cells underlies diabetic neuropathy. Proc. Natl Acad. Sci. USA 102, 12525–12530 (2005).

14. Fujimiya, M. et al. Fusion of proinsulin-producing bone marrow-derived cells with hepatocytes in diabetes. Proc. Natl Acad. Sci. USA 104, 4030–4035 (2007).

15. Said, G. Diabetic neuropathy-a review. Nat. Clin. Pr. Neurol. 3, 331–340(2007).

16. Vincent, A. M., Callaghan, B. C., Smith, A. L. & Feldman, E. L. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat. Rev. Neurol. 7, 573–583 (2011).

17. Chan, L., Terashima, T., Urabe, H., Lin, F. & Kojima, H. Pathogenesis of diabetic neuropathy: bad to the bone. Ann. N. Y. Acad. Sci. 1240, 70–76 (2011).

18. Katagi, M. et al. Hyperglycemia induces abnormal gene expression in hematopoietic stem cells and their progeny in diabetic neuropathy. FEBS Lett. 588, 1080–1086 (2014).

19. Dyck, P. J. et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 43, 817–824 (1993).

20. Tesfaye, S. et al. Ruboxistaurin Study Group. Factors that impact symptomatic diabetic peripheral neuropathy in placebo-administered patients from two 1- year clinical trials. Diabetes Care 30, 2626–2632 (2007).

21. Kojima, H. et al. Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc. Natl Acad. Sci. USA 101, 2458–2463 (2004).

22. Terashima, T., Kojima, H. & Chan, L. Bone marrow expression of poly(ADP- ribose) polymerase underlies diabetic neuropathy via hematopoietic-neuronal cell fusion. FASEB J. 26, 295–308 (2012).

23. Urabe, H., Terashima, T., Lin, F., Kojima, H. & Chan, L. Bone marrow-derived TNF-α causes diabetic neuropathy in mice. Diabetologia 58, 402–410 (2015).

24. Kojima, H., Kim, J. & Chan, L. Emerging roles of hematopoietic cells in the pathobiology of diabetic complications. Trends Endocrinol. Metab. 25,178–187 (2014).

25. Kojima, H., Fujimiya, M., Terashima, T., Kimura, H. & Chan, L. Extrapancreatic proinsulin/insulin-expressing cells in diabetes mellitus: is history repeating itself? Endocr. J. 53, 715–722 (2016).

26. Niwa, H. et al. An efficient gene-trap method using poly A trap vectors and characterization of gene-trap events. J. Biochem. 113, 343–349 (1993).

27. Yagi, M. et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345–351 (2005).

28. Gurtner, G. C. et al. Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev. 9, 1–14 (1995).

29. Thyberg, J. Differences in caveolae dynamics in vascular smooth muscle cells of different phenotypes. Lab Invest 80, 915–929 (2000).

30. Wilson, N. H. & Key, B. Neogenin: one receptor, many functions. Int. J. Biochem. Cell Biol. 39, 874–878 (2007).

31. Rask-Madsen, C. & King, G. L. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat. Clin. Pr. Endocrinol. Metab. 3, 46–56 (2007).

32. Nakagawa, T. et al. Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat. Rev. Nephrol. 7, 36–44 (2011).

33. Y Duan, Y. et al. Bone marrow-derived cells restore functional integrity of the gut epithelial and vascular barriers in a model of diabetes and ACE2 deficiency. Circ. Res. 125, 969–988 (2019).

34. Albiero, M. et al. Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1. Diabetes Apr 63, 1353–1365 (2014).

35. Ferraro, F. et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci. Transl. Med 3, 104ra101 (2011). 12.

36. Geevarghese, A. & Herman, I. M. Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies. Transl. Res. 163, 296–306 (2014).

37. Busik, J. V. et al. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J. Exp. Med. 206, 2897–2906 (2009).

38. Yellowlees Douglas, J. et al. Bone marrow-CNS connections: implications in the pathogenesis of diabetic retinopathy. Prog. Retin Eye Res. 31, 481–494 (2012).

39. Adler, B. J., Kaushansky, K. & Rubin, C. T. Obesity-driven disruption of haematopoiesis and the bone marrow niche. Nat. Rev. Endocrinol. 10, 737–748 (2014).

40. Wagers, A. J., Christensen, J. L. & Weissman, I. L. Cell fate determination from stem cells. Gene Ther. 9, 606–612 (2002).

41. Arai, F. & Suda, T. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann. N. Y. Acad. Sci. 1106, 41–53 (2007).

42. Urabe, H., Terashima, T., Kojima, H. & Chan, L. Ablation of a small subpopulation of diabetes-specific bone marrow-derived cells in mice protects against diabetic neuropathy. Am. J. Physiol. Endocrinol. Metab. 310,E269–E275 (2016).

43. Albiero, M. et al. Diabetes-associated myelopoiesis drives stem cell Mmobilopathy through an OSM-p66Shc signaling pathway. Diabetes Jun. 68, 1303–1314 (2019).

44. Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695–708 (2013). 7.

45. Tousoulis, D. et al. Diabetes mellitus-associated vascular impairment: novel circulating biomarkers and therapeutic approaches. J. Am. Coll. Cardiol. 62, 667–676 (2013).

46. Schlesinger, M. & Bendas, G. Vascular cell adhesion molecule-1 (VCAM- 1)–an increasing insight into its role in tumorigenicity and metastasis. Int. J. Cancer 136, 2504–2514 (2015).

47. Massagué, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298–306 (2016).

48. Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011).

49. Kitamura, T., Qian, B. Z. & Pollard, J. W. Immune cell promotion of metastasis. Nat. Rev. Immunol. 15, 73–86 (2015).

50. Nobuta, H. et al. A role for bone marrow-derived cells in diabetic nephropathy. FASEB J. Mar. 33, 4067–4076 (2019).

51. Carter, R. A., Campbell, I. K., O’Donnel, K. L. & Wicks, I. P. Vascular cell adhesion molecule-1 (VCAM-1) blockade in collagen-induced arthritis reduces joint involvement and alters B cell trafficking. Clin. Exp. Immunol. Apr 128, 44–51 (2002).

52. Yamakawa, I. et al. Inactivation of TNF-α ameliorates diabetic neuropathy in mice. Am. J. Physiol. Endocrinol. Metab. 301, E844–E852 (2011).

53. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S. & Mulligan, R. C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

参考文献をもっと見る