リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Ultrafast X-ray diffraction with an XFEL: Probing transient structures of nanoparticles」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Ultrafast X-ray diffraction with an XFEL: Probing transient structures of nanoparticles

Niozu, Akinobu 京都大学 DOI:10.14989/doctor.k22990

2021.03.23

概要

物質の性質を理解する上で、物質を形作る原子や分子の配列に関する情報は最も基本的な性質であり、20 世紀初頭以降、X 線を用いた構造解析法は物質の原子スケールの構造情報を得るための手法として広く利用されてきた。近年、X 線自由電子レーザー(XFEL)と呼ばれる新規な X 線光源の開発により、高強度、高コヒーレンスかつ短パルス(~千兆分の 1 秒程度)という特長を有する X 線パルスが利用可能となり、 X 線イメージングを用いた単粒子構造解析や、X 線非線形光学などの新しい研究領域が開拓されつつある。特に、XFEL の短パルス性を利用することで、これまで観測が困難であった状態変化の途上にある物質の過渡的な構造の観測が期待される。単一パルスにより X 線回折像を得られる XFEL 実験では、XFEL のコヒーレンスに起因する干渉(スペックル)パターンから従来の手法を超えた詳細な構造情報が得られると期待される一方で、アンサンブル平均・時間平均を経ない回折像データの取り扱いに関しては XFEL の特長を活かす解析手法の開発が重要な課題となっている。本研究では、国内の XFEL 施設である SACLA において、ナノ粒子の超高速 X 線回折実験を実施し、XFEL の短パルス性を活かした、過渡的な構造の観測手法の確立を目指した。

申請者は上記の背景および動機に基づき、キセノン(Xe)ナノ粒子を試料とした実験を行い、①結晶化直後におけるナノ粒子の構造とその起源、②強力なレーザー照射に伴うナノ粒子のプラズマ化に伴う構造変化の2つのテーマについて研究を行った。

1つ目のテーマでは、Xe ナノ粒子が結晶化する際の構造変化ダイナミクスの観測を、XFEL を用いる超高速 X 線回折によって行った。真空中へ Xe ガスを噴出すると、断熱膨張による冷却により試料ガスはごく短時間で過冷却状態に至り、そこからの結晶核生成を経てナノ粒子が生成してゆくと考えられる。ファンデルワールス力によって凝集するXe は、バルク固体では面心立方構造を取ることが知られているが、小さなナノ粒子の安定構造は面心立方構造とは異なることが知られており、粒子成長とともに面心立方構造へ至る経路は自明ではない。申請者は XFEL を用いる単粒子 X 線回折実験で得られた回折像の解析から、粒子生成後、数百マイクロ秒という早い時間におけるXe ナノ粒子において、安定な面心立方構造だけでなく、積層欠陥を多数含むランダム六方最密充填構造と呼ばれる準安定な構造が存在していることを明らかにするとともに、この構造が結晶成長の kinetics に基づくことを示した。

2つ目のテーマでは近赤外(NIR)レーザーと XFEL を用いる時分割の X 線回折実験を行い NIR レーザーパルス(波長 800nm、パルス幅~30 fs)照射後の Xe ナノ粒子中の結晶構造の変化を、SACLA から供給される硬 X 線パルス(10 keV、パルス幅~10 fs、強度~4×1017 W/cm2)を用いて観測した。NIR レーザーパルスの強度を系統的に変えることで、NIR レーザー照射によって生成するプラズマの状態を制御し、NIR レーザー照射後にXe ナノ粒子中の結晶構造が消失する時間スケールが生成したプラズマ状態を特徴づけるプラズマ音速で支配されることを明らかにした。

この論文で使われている画像

参考文献

[1] W. C. Ro¨ntgen. On a New Kind of Rays. Science (80-. )., 3(59):227–231, feb 1896. doi:10.1126/science.3.59.227. Cited on page 3.

[2] M. von Laue. Concerning the detection of X-ray interferences. In Nobel Lect. Phys. 1901 – 1921, pages 347–355. World Scientific Publishing, nov 1998. doi:10.1142/3726. Cited on page 3.

[3] W. L. Bragg. The diffraction of X-rays by crystals. In Nobel Lect. Phys. 1901 – 1921, pages 370–382. World Scientific Publishing, nov 1998. doi:10.1142/3726. Cited on page 3.

[4] P. Emma et al. First lasing and operation of an a˚ngstrom-wavelength free- electron laser. Nat. Photonics, 4(9):641–647, sep 2010. doi:10.1038/ nphoton.2010.176. Cited on pages 3 and 22.

[5] T. Ishikawa et al. A compact X-ray free-electron laser emitting in the sub- a˚ngstro¨m region. Nat. Photonics, 6(8):540–544, aug 2012. doi:10.1038/ nphoton.2012.141. Cited on pages 3, 22, 37, and 39.

[6] K. J. Gaffney, H. N. Chapman. Imaging Atomic Structure and Dynamics with Ultrafast X-ray Scattering. Science (80-. )., 316(5830):1444–1448, jun 2007. doi:10.1126/science.1135923. Cited on pages 3 and 4.

[7] R. Neutzo et al. Potential for biomolecular imaging with femtosecond X- ray pulses. Nature, 406(6797):752–757, aug 2000. doi:10.1038/35021099. Cited on pages 3, 30, and 31.

[8] N. D. Loh et al. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature, 486(7404):513–517, jun 2012. doi:10. 1038/nature11222. Cited on pages 4 and 33. 131

[9] I. Barke et al. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering. Nat. Commun., 6(1):6187, may 2015. doi: 10.1038/ncomms7187. Cited on pages 4 and 33.

[10] Y. Takahashi et al. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses. Nano Lett., 13(12):6028–6032, dec 2013. doi:10.1021/nl403247x. Cited on pages 4 and 33.

[11] T. Kimura et al. Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nat. Commun., 5(1):3052, may 2014. doi:10.1038/ncomms4052. Cited on pages 4 and 33.

[12] G. Van Der Schot et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nat. Commun., 6:1–9, 2015. doi:10.1038/ncomms6704. Cited on pages 4 and 33.

[13] Report of the Executive Committee for 1991. Technical Report 6, nov 1992. doi:10.1107/s0108767392008328. Cited on page 10.

[14] J. Als-Nielsen, D. McMorrow. Elements of Modern X-ray Physics: Second Edi- tion. Wiley, mar 2011. doi:10.1002/9781119998365. Cited on pages 13, 14, and 23.

[15] P. P. Ewald. Introduction to the dynamical theory of X-ray diffraction. Acta Crystallogr. Sect. A, 25(1):103–108, 1969. doi:10.1107/S0567739469000155. Cited on page 15.

[16] J. M. Madey. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys., 42(5):1906–1913, apr 1971. doi:10.1063/1.1660466. Cited on page 21.

[17] D. A. Deacon et al. First operation of a free-electron laser. Phys. Rev. Lett., 38(16):892–894, apr 1977. doi:10.1103/PhysRevLett.38.892. Cited on page 21.

[18] R. Bonifacio, C. Pellegrini, L. M. Narducci. Collective Instabilities and High- Gain Regime Free Electron Laser. In AIP Conf. Proc., volume 118, pages 236–259. AIP, 1984. doi:10.1063/1.34640. Cited on page 21.

[19] A. M. Kondratenko, E. L. Saldin. Generation of Coherent Radiation By a Rel- ativistic Electron Beam in an Ondulator. Part. Accel. Print, 10(3-4):207–216, 1980. Cited on page 21.

[20] W. Ackermann et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics, 1(6):336–342, jun 2007. doi:10.1038/nphoton.2007.76. Cited on page 22.

[21] E. Allaria et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics, 6(10):699–704, oct 2012. doi:10.1038/nphoton.2012.233. Cited on page 23.

[22] I. S. Ko et al. Construction and commissioning of PAL-XFEL facility. Appl. Sci., 7(5):479, may 2017. doi:10.3390/app7050479. Cited on page 23.

[23] T. Tschentscher et al. Photon Beam Transport and Scientific Instruments at the European XFEL. Appl. Sci., 7(6):592, jun 2017. doi:10.3390/app7060592. Cited on page 23.

[24] C. J. Milne et al. SwissFEL: The Swiss X-ray Free Electron Laser. Appl. Sci., 7(7):720, 2017. doi:10.3390/app7070720. Cited on page 23.

[25] A. Bharti, N. Goyal. Fundamental of Synchrotron Radiations. In Syn- chrotron Radiat. - Useful Interes. Appl. IntechOpen, may 2019. doi:10.5772/ intechopen.82202. Cited on page 24.

[26] Z. Huang. Brightness and coherence of synchrotron radiation and fels. In IPAC 2013 Proc. 4th Int. Part. Accel. Conf., pages 16–20, 2013. Cited on page 24.

[27] K. Zhukovsky. Undulators for Short Pulse X-Ray Self-Amplified Spontaneous Emission-Free Electron Lasers. In High Energy Short Pulse Lasers, number tourism, page 13. InTech, sep 2016. doi:10.5772/64439. Cited on page 25.

[28] Z. Huang, K. J. Kim. Review of x-ray free-electron laser theory. Phys. Rev. Spec. Top. - Accel. Beams, 10(3):1–26, 2007. doi:10.1103/PhysRevSTAB.10. 034801. Cited on pages 26 and 29.

[29] J. R. Schneider et al. FLASH: The Free-Electron Laser in Hamburg. Dtsch. Elektron. DESY, page 56, 2007. Cited on page 28.

[30] D. Rupp. Ionization and plasma dynamics of single large xenon clusters in superintense XUV pulses. Doctoral thesis, Technische Universita¨t Berlin, Fakulta¨t II - Mathematik und Naturwissenschaften, 2013. doi:10.14279/ depositonce-3643. Cited on pages 28, 33, and 46.

[31] I. Inoue et al. Generation of narrow-band X-ray free-electron laser via reflec- tion self-seeding. Nat. Photonics, 13(5):319–322, may 2019. doi:10.1038/ s41566-019-0365-y. Cited on page 30.

[32] A. Doerr. Diffraction before destruction. Nat. Methods, 8(4):283, apr 2011. doi:10.1038/nmeth0411-283. Cited on page 30.

[33] J. Miao et al. Beyond crystallography: Diffractive imaging using coherent X-ray light sources. Science (80-. )., 348(6234):530–535, may 2015. doi: 10.1126/science.aaa1394. Cited on page 31.

[34] D. Sayre. Some implications of a theorem due to Shannon. Acta Crystallogr., 5(6):843–843, nov 1952. doi:10.1107/s0365110x52002276. Cited on page 31.

[35] D. Sayre. Prospects for long-wavelength X-ray microscopy and diffraction. In Imaging Process. Coherence Phys., pages 229–235. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. doi:10.1007/3-540-09727-9_82. Cited on page 31.

[36] J. Miao, D. Sayre, H. N. Chapman. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A, 15(6):1662, jun 1998. doi:10.1364/josaa.15.001662. Cited on page 31.

[37] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21(15):2758, 1982. arXiv:1403.3316, doi:10.1364/ao.21.002758. Cited on page 32.

[38] J. Miao et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400(6742):342–344, jul 1999. doi:10.1038/22498. Cited on page 32.

[39] I. K. Robinson et al. Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction. Phys. Rev. Lett., 87(19):1–4, 2001. doi:10.1103/ PhysRevLett.87.195505. Cited on page 32.

[40] H. N. Chapman et al. Femtosecond diffractive imaging with a soft-X-ray free- electron laser. Nat. Phys., 2(12):839–843, 2006. arXiv:0610044, doi:10. 1038/nphys461. Cited on page 33.

[41] H. N. Chapman et al. Femtosecond X-ray protein nanocrystallography. Nature, 470(7332):73–78, feb 2011. doi:10.1038/nature09750. Cited on page 33.

[42] M. M. Seibert et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature, 470(7332):78–82, feb 2011. doi:10.1038/nature09748. Cited on page 33.

[43] D. Rupp et al. Identification of twinned gas phase clusters by single-shot scat- tering with intense soft x-ray pulses. New J. Phys., 14(5):055016, may 2012. doi:10.1088/1367-2630/14/5/055016. Cited on pages 33, 80, and 103.

[44] T. Nishiyama et al. Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data. IUCrJ, 7(1):10–17, 2020. doi:10.1107/S2052252519014222. Cited on pages 33, 80, and 103.

[45] Z. Kam. Determination of Macromolecular Structure in Solution by Spatial Correlation of Scattering Fluctuations. Macromolecules, 10(5):927–934, sep 1977. doi:10.1021/ma60059a009. Cited on pages 33 and 34.

[46] Z. Kam. The reconstruction of structure from electron micrographs of ran- domly oriented particles. J. Theor. Biol., 82(1):15–39, jan 1980. doi: 10.1016/0022-5193(80)90088-0. Cited on page 33.

[47] Z. Kam, M. H. Koch, J. Bordas. Fluctuation x-ray scattering from biological particles in frozen solution by using synchrotron radiation. Proc. Natl. Acad. Sci., 78(6):3559–3562, jun 1981. doi:10.1073/pnas.78.6.3559. Cited on page 33.

[48] R. P. Kurta et al. Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses. Phys. Rev. Lett., 119(15):158102, oct 2017. doi:10.1103/PhysRevLett.119.158102. Cited on pages 33 and 34.

[49] I. A. Zaluzhnyy et al. Angular X-ray Cross-Correlation Analysis (AXCCA): Basic concepts and recent applications to soft matter and nanomaterials. Materials (Basel)., 12(21):3464, oct 2019. doi:10.3390/ma12213464. Cited on page 33.

[50] R. P. Kurta, M. Altarelli, I. A. Vartanyants. X-ray cross-correlation analysis of disordered ensembles of particles: Potentials and limitations. Adv. Condens. Matter Phys., 2013:1–15, 2013. doi:10.1155/2013/959835. Cited on page 34.

[51] G. Chen et al. Structure determination of Pt-coated Au dumbbells via fluc- tuation X-ray scattering. J. Synchrotron Radiat., 19(5):695–700, sep 2012. doi:10.1107/S0909049512023801. Cited on page 34.

[52] D. Starodub et al. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns. Nat. Commun., 3(1):1276, jan 2012. doi: 10.1038/ncomms2288. Cited on page 34.

[53] H. Liu et al. Three-dimensional single-particle imaging using angular correla- tions from X-ray laser data. Acta Crystallogr. Sect. A, 69(4):365–373, jul 2013. doi:10.1107/S0108767313006016. Cited on page 34.

[54] D. Mendez et al. Angular correlations of photons from solution diffraction at a free-electron laser encode molecular structure. IUCrJ, 3(6):420–429, nov 2016. doi:10.1107/S2052252516013956. Cited on pages 34, 35, 69, 71, 73, and 114.

[55] D. Mendez et al. Observation of correlated X-ray scattering at atomic res- olution. Philos. Trans. R. Soc. B Biol. Sci., 369(1647):20130315, jul 2014. doi:10.1098/rstb.2013.0315. Cited on pages 34 and 69.

[56] A. Barty et al. Ultrafast single-shot diffraction imaging of nanoscale dynam- ics. Nat. Photonics, 2(7):415–419, jul 2008. doi:10.1038/nphoton.2008.128. Cited on page 36.

[57] K. Tono et al. Multiple-beamline operation of SACLA. J. Synchrotron Ra- diat., 26(2):595–602, mar 2019. doi:10.1107/S1600577519001607. Cited on pages 37, 39, and 40.

[58] M. Yabashi et al. Status of the SACLA facility. Appl. Sci., 7(6):604, jun 2017. doi:10.3390/app7060604. Cited on pages 39, 40, and 41.

[59] K. Tono et al. Beamline, experimental stations and photon beam diagnostics for the hard x-ray free electron laser of SACLA. New J. Phys., 15, 2013. doi: 10.1088/1367-2630/15/8/083035. Cited on pages 39, 40, 42, and 93.

[60] T. Katayama et al. A beam branching method for timing and spectral charac- terization of hard X-ray free-electron lasers. Struct. Dyn., 3(3):034301, may 2016. doi:10.1063/1.4939655. Cited on pages 40, 41, and 42.

[61] T. Katayama et al. X-ray optics for advanced ultrafast pump–probe X-ray experiments at SACLA. J. Synchrotron Radiat., 26(2):333–338, mar 2019. doi:10.1107/S1600577518018362. Cited on pages 40 and 52.

[62] T. Kameshima et al. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments. Rev. Sci. In- strum., 85(3):033110, mar 2014. doi:10.1063/1.4867668. Cited on pages 43, 44, 52, and 58.

[63] K. Tono et al. Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): application to serial protein crystallography using an X-ray free- electron laser. J. Synchrotron Radiat., 22(3):532–537, may 2015. doi:10. 1107/S1600577515004464. Cited on page 43.

[64] E. Wilhelm, R. Battino. Estimation of Lennard-Jones (6,12) Pair Potential Parameters from Gas Solubility Data. J. Chem. Phys., 55(8):4012–4017, oct 1971. doi:10.1063/1.1676694. Cited on page 45.

[65] Kenneth Ramon Ferguson. Crystal Structure Determinations of Xenon Nanopar- ticles and X-Ray Induced Transient Lattice Contraction in the Solid-To-Plasma Transition. PhD thesis, 2016. Cited on pages 47, 49, and 63.

[66] O. F. Hagena. Nucleation and growth of clusters in expanding nozzle flows. Surf. Sci., 106(1-3):101–116, may 1981. doi:10.1016/0039-6028(81) 90187-4. Cited on pages 46 and 48.

[67] O. F. Hagena. Cluster ion sources (invited). Rev. Sci. Instrum., 63(4):2374– 2379, apr 1992. doi:10.1063/1.1142933. Cited on pages 48 and 94.

[68] H. Fukuzawa, K. Nagaya, K. Ueda. Advances in instrumentation for gas- phase spectroscopy and diffraction with short-wavelength free electron lasers. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 907(March):116–131, nov 2018. doi:10.1016/j.nima.2018.03.017. Cited on pages 51, 52, 53, and 94.

[69] T. Nishiyama. Static structure and dynamical structural changes of nanoparticles using XFEL pulses. PhD thesis, 2020. Cited on pages 51 and 53.

[70] M. Volmer, A. Weber. Keimbildung in u¨bersa¨ttigten Gebilden. Zeitschrift fu¨r Phys. Chemie, 119U(1):277–301, jan 2017. doi:10.1515/zpch-1926-11927. Cited on page 55.

[71] R. Becker, W. Do¨ring. Kinetische Behandlung der Keimbildung in u¨bersa¨ttigten Da¨mpfen. Ann. Phys., 416(8):719–752, 1935. doi:10.1002/andp. 19354160806. Cited on page 55.

[72] W. Ostwald. Studien u¨ber die Bildung und Umwandlung fester Ko¨rper. Zeitschrift fu¨r Phys. Chemie, 22U(1):289–330, jan 2017. doi:10.1515/ zpch-1897-2233. Cited on page 56.

[73] S. Alexander, J. McTague. Should all crystals be bcc? Landau theory of solid- ification and crystal nucleation. Phys. Rev. Lett., 41(10):702–705, sep 1978. doi:10.1103/PhysRevLett.41.702. Cited on page 56.

[74] L. Lupi et al. Role of stacking disorder in ice nucleation. Nature, 551(7679):218–222, nov 2017. doi:10.1038/nature24279. Cited on pages 56 and 87.

[75] U. Gasser et al. Real-space imaging of nucleation and growth in colloidal crystallization. Science (80-. )., 292(5515):258–262, apr 2001. doi:10.1126/ science.1058457. Cited on pages 56 and 87.

[76] S.-T. Yau, P. G. Vekilov. Quasi-planar nucleus structure in apoferritin crys- tallization. Nature, 406(6795):494–497, aug 2000. doi:10.1038/35020035. Cited on page 56.

[77] G. Bradski. The OpenCV Library. Dr Dobbs J. Softw. Tools, 25:120–125, 2000. URL: http://opencv.willowgarage.com, doi:10.1111/0023-8333. 50.s1.10. Cited on pages 58 and 95.

[78] T. Nishiyama et al. Ultrafast Structural Dynamics of Nanoparticles in In- tense Laser Fields. Phys. Rev. Lett., 123(12):123201, sep 2019. doi:10.1103/ PhysRevLett.123.123201. Cited on pages 61, 91, 102, and 104.

[79] P. Norby. Synchrotron Powder Diffraction using Imaging Plates: Crystal Struc- ture Determination and Rietveld Refinement. J. Appl. Crystallogr., 30(1):21– 30, feb 1997. doi:10.1107/S0021889896009995. Cited on page 61.

[80] B. W. Van De Waal, G. Torchet, M. F. De Feraudy. Structure of large argon clusters ArN , 103 < N < 105 : Experiments and simulations. Chem. Phys. Lett., 331(1):57–63, nov 2000. doi:10.1016/S0009-2614(00)01050-2. Cited on pages 63 and 84.

[81] A. Davtyan et al. Determination of the stacking fault density in highly defective single GaAs nanowires by means of coherent diffraction imaging. New J. Phys., 18(6):063021, jun 2016. doi:10.1088/1367-2630/18/6/063021. Cited on pages 64, 78, and 119.

[82] P. N. Pusey et al. Structure of crystals of hard colloidal spheres. Phys. Rev. Lett., 63(25):2753–2756, dec 1989. doi:10.1103/PhysRevLett.63.2753. Cited on pages 65 and 85.

[83] V. C. Martelozzo et al. Structural aging of crystals of hard-sphere colloids. Phys. Rev. E, 66(2):021408, aug 2002. doi:10.1103/PhysRevE.66.021408. Cited on pages 67, 85, and 86.

[84] T. Ekeberg, S. Engblom, J. Liu. Machine learning for ultrafast X-ray diffraction patterns on large-scale GPU clusters. Int. J. High Perform. Com- put. Appl., 29(2):233–243, may 2015. arXiv:1409.4256, doi:10.1177/1094342015572030. Cited on page 68.

[85] I. P. Dolbnya et al. Coexistence of rhcp and fee phases in hard-sphere col- loidal crystals. Europhys. Lett., 72(6):962–968, dec 2005. doi:10.1209/epl/ i2005-10325-6. Cited on pages 75, 79, 85, and 86.

[86] J. Farges et al. Noncrystalline structure of argon clusters. I. Polyicosahedral structure of ArN clusters, 20 < N < 50. J. Chem. Phys., 78(8):5067–5080, apr 1983. doi:10.1063/1.445375. Cited on page 84.

[87] J. Farges et al. Noncrystalline structure of argon clusters. II. Multilayer icosa- hedral structure of ArN clusters 50 < N < 750. J. Chem. Phys., 84(6):3491– 3501, mar 1986. doi:10.1063/1.450235. Cited on page 84.

[88] B. W. Van De Waal. Icosahedral, decahedral, fcc, and defect-fcc structural models for ArN clusters, N&500: How plausible are they? J. Chem. Phys., 98(6):4909–4919, 1993. doi:10.1063/1.464946. Cited on page 84.

[89] N. V. Krainyukova et al. Observation of the fcc-to-hcp transition in ensembles of argon nanoclusters. Phys. Rev. Lett., 109(24):245505, dec 2012. doi: 10.1103/PhysRevLett.109.245505. Cited on page 84.

[90] B. J. Alder, T. E. Wainwright. Phase transition for a hard sphere system. J. Chem. Phys., 27(5):1208–1209, 1957. doi:10.1063/1.1743957. Cited on page 84.

[91] V. J. Anderson, H. N. Lekkerkerker. Insights into phase transition kinetics from colloid science. Nature, 416(6883):811–815, apr 2002. doi:10.1038/ 416811a. Cited on page 84.

[92] A. D. Bruce, N. B. Wilding, A. J. Ackland. Free energy of crystalline solids: A lattice-switch monte carlo method. Phys. Rev. Lett., 79(16):3002–3005, 1997. doi:10.1103/PhysRevLett.79.3002. Cited on page 85.

[93] W. K. Kegel, J. K. Dhont. ”Aging” of the structure of crystals of hard col- loidal spheres. J. Chem. Phys., 112(7):3431–3436, feb 2000. doi:10.1063/ 1.480923. Cited on page 85.

[94] Z. Cheng et al. Crystallization Kinetics of Hard Spheres in Microgravity in the Coexistence Regime: Interactions between Growing Crystallites. Phys. Rev. Lett., 88(1):4, dec 2002. doi:10.1103/PhysRevLett.88.015501. Cited on page 85.

[95] S. Pronk, D. Frenkel. Can stacking faults in hard-sphere crystals anneal out spontaneously? J. Chem. Phys., 110(9):4589–4592, mar 1999. doi:10.1063/ 1.478339. Cited on pages 86 and 87.

[96] Y. Choi, T. Ree, F. H. Ree. Crystal stability of heavy-rare-gas solids on the melt- ing line. Phys. Rev. B, 48(5):2988–2991, aug 1993. doi:10.1103/PhysRevB. 48.2988. Cited on page 86.

[97] J. Naghizadeh, S. A. Rice. Kinetic theory of dense fluids. X. Measurement and interpretation of self-diffusion in liquid Ar, Kr, Xe, and CH4. J. Chem. Phys., 36(10):2710–2720, may 1962. doi:10.1063/1.1732357. Cited on page 86.

[98] S. Auer, D. Frenkel. Prediction of absolute crystal-nucleation rate in hard- sphere colloids. Nature, 409(6823):1020–1023, feb 2001. doi:10.1038/ 35059035. Cited on page 87.

[99] T. Fennel et al. Plasmon-Enhanced Electron Acceleration in Intense Laser Metal-Cluster Interactions. Phys. Rev. Lett., 98(14):143401, apr 2007. doi: 10.1103/PhysRevLett.98.143401. Cited on pages 89 and 90.

[100] T. Ditmire et al. High-energy ions produced in explosions of superheated atomic clusters. Nature, 386(6620):54–56, mar 1997. doi:10.1038/ 386054a0. Cited on page 90.

[101] M. Lezius et al. Explosion Dynamics of Rare Gas Clusters in Strong Laser Fields. Phys. Rev. Lett., 80(2):261–264, 1998. doi:10.1103/PhysRevLett. 80.261. Cited on pages 90 and 128.

[102] A. McPherson et al. Multiphoton-induced X-ray emission at 4-5 keV from Xe atoms with multiple core vacancies. Nature, 370(6491):631–634, aug 1994. doi:10.1038/370631a0. Cited on page 90.

[103] W. A. Schroeder et al. Pump laser wavelength-dependent control of the effi- ciency of kilovolt x-ray emission from atomic clusters. J. Phys. B At. Mol. Opt. Phys., 31(22):5031–5051, nov 1998. doi:10.1088/0953-4075/31/22/014. Cited on page 90.

[104] J. Tiggesba¨umker et al. Resolving the Ion and Electron Dynamics in Finite Sys- tems Exposed to Intense Optical Laser Fields. In Springer Ser. Mater. Sci., vol- ume 132, pages 85–113. 2010. doi:10.1007/978-3-642-03953-9_5. Cited on page 90.

[105] T. Gorkhover et al. Femtosecond and nanometre visualization of structural dy- namics in superheated nanoparticles. Nat. Photonics, 10(2):93–97, feb 2016. doi:10.1038/nphoton.2015.264. Cited on pages 91, 92, 102, 104, 105, and 107.

[106] M. J. Bucher. Ultrafast Dynamics of Nanoparticles in Highly Intense X-Ray Pulses. PhD thesis, 2017. doi:10.14279/depositonce-6598. Cited on page 91.

[107] K. R. Ferguson et al. Transient lattice contraction in the solid-to-plasma tran- sition. Sci. Adv., 2(1):e1500837, jan 2016. doi:10.1126/sciadv.1500837. Cited on pages 91 and 112.

[108] P. Mora. Plasma Expansion into a Vacuum. Phys. Rev. Lett., 90(18):4, may 2003. doi:10.1103/PhysRevLett.90.185002. Cited on pages 91, 104, and 107.

[109] Y. Inubushi et al. Determination of the Pulse Duration of an X-Ray Free Electron Laser Using Highly Resolved Single-Shot Spectra. Phys. Rev. Lett., 109(14):144801, oct 2012. doi:10.1103/PhysRevLett.109.144801. Cited on page 93.

[110] A. Niozu et al. Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays. IUCrJ, 7(2):276–286, mar 2020. doi:10.1107/S205225252000144X. Cited on page 95.

[111] Y. Kumagai et al. Following the Birth of a Nanoplasma Produced by an Ul- trashort Hard-X-Ray Laser in Xenon Clusters. Phys. Rev. X, 8(3):031034, aug 2018. doi:10.1103/PhysRevX.8.031034. Cited on page 98.

[112] J. W. Tisch et al. Interaction of intense laser pulses with atomic clusters: Mea- surements of ion emission, simulations and applications. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 205:310–323, may 2003. doi:10.1016/S0168-583X(02)01947-X. Cited on pages 102 and 107.

[113] C. Peltz et al. Time-resolved x-ray imaging of anisotropic nanoplasma expan- sion. Phys. Rev. Lett., 113(3):133401, sep 2014. doi:10.1103/PhysRevLett. 113.133401. Cited on page 104.

[114] T. Do¨ppner et al. The effect of volumetric weighting in the interaction of intense laser fields with clusters. Eur. Phys. J. D, 43(1-3):261–266, jul 2007. doi:10.1140/epjd/e2007-00125-6. Cited on page 105.

[115] S. J. Gitomer et al. Fast ions and hot electrons in the laser–plasma interaction. Phys. Fluids, 29(8):2679, 1986. doi:10.1063/1.865510. Cited on page 106.

[116] R. F. Schmalz. New self-similar solutions for the unsteady one-dimensional expansion of a gas into a vacuum. Phys. Fluids, 28(9):2923–2925, sep 1985. doi:10.1063/1.865214. Cited on page 106.

[117] S. P. Hau-Riege, R. A. London, A. Szoke. Dynamics of biological molecules irradiated by short x-ray pulses. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Re- lat. Interdiscip. Top., 69(5):12, may 2004. doi:10.1103/PhysRevE.69.051906. Cited on page 107.

[118] D. Rupp et al. Recombination-Enhanced Surface Expansion of Clusters in In- tense Soft X-Ray Laser Pulses. Phys. Rev. Lett., 117(15):153401, oct 2016. doi:10.1103/PhysRevLett.117.153401. Cited on page 127.

[119] M. A. Lebeault et al. Resonant coupling of small size-controlled lead clusters with an intense laser field. Eur. Phys. J. D, 20(2):233–242, aug 2002. doi: 10.1140/epjd/e2002-00115-2. Cited on page 128.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る