リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Full characterization of superradiant pulses generated from a free-electron laser oscillator」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Full characterization of superradiant pulses generated from a free-electron laser oscillator

Zen, Heishun Hajima, Ryoichi Ohgaki, Hideaki 京都大学 DOI:10.1038/s41598-023-33550-z

2023.04.18

概要

The detailed structure of superradiant pulses generated from a free-electron laser (FEL) oscillator was experimentally revealed for the first time. Owing to the phase retrieval with a combination of linear and nonlinear autocorrelation measurements, we successfully reconstructed the temporal waveform of an FEL pulse including its phase variation. The waveform clearly exhibits the features of a superradiant pulse, the main pulse followed by a train of sub-pulses with π-phase jumps, reflecting the physics of light-matter resonant interaction. From numerical simulations, the train of sub-pulses was found to originate from repeated formation and deformation of microbunches accompanied with a temporal slippage of the electrons and light field, a process quite different from coherent many-body Rabi oscillations observed in superradiance from atomic systems.

この論文で使われている画像

参考文献

1. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954).

2. Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Observation of Dicke superradiacne in optically pumped HF gas.

Phys. Rev. Lett. 30, 309 (1973).

3. Gross, M., Fabre, C., Pillet, P. & Haroche, S. Observation of near-infrared Dicke superradiance on cascading transitions in atomic

sodium. Phys. Rev. Lett. 36, 1035 (1976).

4. Flusberg, A., Mossberg, T. & Hartmann, S. R. Observation of Dicke superradiance at 1.30 μm in atomic Tl vapor. Phys. Lett. A 58,

373 (1976).

5. Gibbs, H. M., Vrehen, Q. H. F. & Hikspoors, H. M. J. Single-pulse superfluorescence in Cesium. Phys. Rev. Lett. 39, 547 (1977).

6. Kumarakrishnan, A., Chudasama, S. & Han, X. Collision-induced superfluorescence. J. Opt. Soc. Am. B 22, 1538–1546 (2005).

7. Nagasono, M. et al. Observation of free-electron-laser-induced collective spontaneous emission (superfluorescence). Phys. Rev.

Lett. 107, 193603 (2011).

8. Harries, J. R. et al. Superfluorescence, free-induction decay, and four-wave mixing: Propagation of free-electron laser pulses through

a dense sample of helium ions. Phys. Rev. Lett. 121, 263201 (2018).

9. Florian, R., Schwan, L. O. & Schmid, D. Superradiance and high-gain mirrorless laser activity of O

­ −2-centers in KCl. Solid State

Commun. 42, 55–57 (1982).

10. Zinov’ev, P. V. et al. Superradiance in a diphenyl crystal containing pyrene. Sov. Phys. J. Exp. Theor. Phys. 58, 1129–1133 (1983).

11. Schmitt-Rink, S., Miller, D. A. B. & Chemla, D. S. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Phys. Rev. B 35, 8113–8125 (1987).

12. De Boer, S. & Wiersma, D. A. Dephasing-induced damping of superradiant emission in J-aggregates. Chem. Phys. Lett. 165, 45–53

(1990).

13. Burnham, D. C. & Chiao, R. Y. Coherent resonance fluorescence excited by short light pulses. Phys. Rev. 188, 667 (1969).

14. Heinzen, D. J., Thomas, J. E. & Feld, M. S. Coherent ringing in superfluorescence. Phys. Rev. Lett. 54, 677 (1985).

15. Allen, L. & Eberly, J. H. Optical Resonance and Two-Level Atoms (Wiley-Interscience, 1975).

16. Dourado, R. A. & Moussa, M. H. Y. Coherent many-body Rabi oscillations via superradiance and superabsorption and the meanfield approach for a superradiant laser. Phys. Rev. A 104, 023708 (2021).

17. Rose, B. C. et al. Coherent Rabi dynamics of a superradiant spin ensemble in a microwave cavity. Phys. Rev. X 7, 031002 (2017).

18. Bonifacio, R. & Casagrande, F. The superradiant regime of a free electron laser. Nucl. Instrum. Methods Phys. Res. A 239, 36–42

(1985).

19. Watanabe, et al. Experimental characterization of superradiance in a single pass high-gain laser-seeded free-electron laser amplifier. Phys. Rev. Lett. 98, 034802 (2007).

20. Giannessi, L. et al. High-order-harmonic generation and superradiance in a seeded free electron laser. Phys. Rev. Lett. 108, 164801

(2012).

21. Giannessi, L. et al. Superradiant cascade in a seeded free-electron laser. Phys. Rev. Lett. 110, 044801 (2013).

22. Mirian, N. S. et al. Generation and measurement of intense few-femtosecond superradiant extreme-ultraviolet free-electron laser

pulses. Nat. Photonics 15, 523–529 (2021).

23. Warren, R. W., Goldstein, J. C. & Newnam, B. E. Spiking mode operation for a uniform-period wiggler. Nucl. Instrum. Methods A

250, 19–25 (1986).

24. Richman, B. A., Maday, J. M. J. & Szarmes, E. First observation of spiking behaviour in the time domain in a free-electron laser.

Phys. Rev. Lett. 63, 1682 (1989).

25. Moore, G. T. & Piovella, N. Superradiant short-pulse propagation in the free-electron laser oscillator. IEEE J. Quantum Electron

27, 2522 (1991).

26. Piovella, N., Chaix, P., Shvets, G. & Jaroszynski, D. Analytical theory of short-pulse free-electron laser oscillator. Phys. Rev. E 52,

5470 (1995).

27. Piovella, N. Transient regime and superradiance in a short-pulse free-electron-laser oscillator. Phys. Rev. E 51, 5147 (1995).

28. Jaroszynski, D. A. et al. Superradiance in a short-pulse free-electron-laser oscillator. Phys. Rev. Lett. 78, 1699 (1997).

29. Jaroszynski, D. A. Superradiance in a short pulse FEL oscillator and its relevance to the X-ray FEL. In AIP Conference Proceedings,

Vol. 413 55 (1997).

30. Hajima, R. & Nagai, R. Generation of a self-chirped few-cycle optical pulse in a FEL oscillator. Phys. Rev. Lett. 91, 024801 (2003).

31. Hajima, R. Few-cycle infrared pulse evolving in FEL oscillators and its application to high-harmonic generation for attosecond

ultraviolet and X-ray pulses. Atoms 9, 15 (2021).

32. Glotin, F., Chaput, R., Jaroszynski, D., Prazeres, R. & Ortega, J.-M. Infrared subpicosecond laser pulses with a free electron laser.

Phys. Rev. Lett. 71, 2587 (1993).

33. Knippels, G. M., Mols, R. F., Van der Meer, A. F., Oepts, D. & Van Amersfoort, P. W. Intense far-infrared free-electron laser pulses

with a length of six optical cycles. Phys. Rev. Lett. 75, 1755 (1995).

34. Nagai, R. et al. Intense ultrashort pulse generation using the JAERI far-infrared free electron laser. Nucl. Instrum. Meth. Phys. Res.

A 483, 129–133 (2002).

35. Iijima, H., Nagai, R., Nishimori, N., Hajima, R. & Minehara, E. J. Frequency-resolved optical gating system with a tellurium crystal

for characterizing free-electron lasers in the wavelength range of 10–30 μm. Rev. Sci. Instrum. 80, 123106 (2009).

Scientific Reports |

Vol:.(1234567890)

(2023) 13:6350 |

https://doi.org/10.1038/s41598-023-33550-z

www.nature.com/scientificreports/

36. Zen, H., Suphakul, S., Kii, T., Masuda, K. & Ohgaki, H. Present status and perspective of long wavelength free electron lasers at

Kyoto University. Phys. Procedia 84, 47–53 (2016).

37. Zen, H., Ohgaki, H. & Hajima, R. High-extraction-efficiency operation of a midinfrared free electron laser enabled by dynamic

cavity desynchronization. Phys. Rev. Accel. Beams 23, 070701 (2020).

38. Zen, H., Ohgaki, H. & Hajima, R. Record high extraction efficiency of free electron laser oscillator. Appl. Phys. Express 13, 102007

(2020).

39. Hong, K. H., Lee, Y. S. & Nam, C. H. Electric-field reconstruction of femtosecond laser pulses from interferometric autocorrelation

using an evolutionary algorithm. Opt. Commun. 271, 169 (2007).

40. Hopf, F. A. Phaser-wave fluctuations in superfluorescence. Phys. Rev. A 20, 2064 (1979).

41. Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

42. Nielsen, N. C., Zu Siederdissen, T. H. & Kuhl, J. Phase evolution of solitonlike optical pulses during excitonic Rabi flopping in a

semiconductor. J. Phys. Rev. Lett. 94, 057406 (2005).

43. Gruetzmacher, J. A., Nome, R. A., Moran, A. M. & Scherer, N. F. Assessing the dephasing dynamics of water from linear fieldresolved pulse propagation experiments and simulations in highly absorbing solutions. J. Chem. Phys. 129, 224502 (2008).

44. Okaba, S., Yu, D., Vincetti, L., Benabid, F. & Katori, H. Superradiance from lattice-confined atoms inside hollow core fibre. Commun. Phys. 2, 136 (2019).

45. Basov, N. G., Ambartsumyan, R. V., Zuev, V. S., Kryukov, P. G. & Letokhov, V. S. Nonlinear amplification of light pulses. J. Exptl.

Theor. Phys. 50, 23–34 (1966).

46. Chu, S. & Wong, S. Linear pulse propagation in an absorbing medium. Phys. Rev. Lett. 48, 738 (1982).

47. Picholle, E., Montes, C., Leycuras, C., Legrand, O. & Botineau, J. Observation of dissipative superluminous solitons in a Brillouin

fiber ring laser. Phys. Rev. Lett. 66, 1454 (1991).

48. Wang, L. J., Kuzmich, A. & Dogariu, A. Gain-assisted superluminal light propagation. Nature 406, 277–279 (2000).

49. Yang, X., Mirian, N. & Giannessi, L. Postsaturation dynamics and superluminal propagation of a superradiant spike in a free

electron laser amplifier. Phys. Rev. Accel. Beams 23, 010703 (2020).

50. Campbell, L. T. & McNeil, B. W. J. Puffin: A three dimensional, unaveraged free electron laser simulation code. Phys. Plasmas 19,

093119 (2012).

51. Sei, N., Zen, H. & Ohgaki, H. Measurement of bunch length evolution in electron beam macro-pulse of S-band linac using coherent

edge radiation. Phys. Lett. A 383, 389–395 (2019).

52. Bakker, R. J. et al. Dynamic desynchronization of a free-electron laser resonator. Phys. Rev. E 48, R3256 (1993).

53. Bamford, D. J. & Deacon, D. A. G. Measurement of the coherent harmonic emission from a free electron laser oscillator. Phys. Rev.

Lett. 62, 1106 (1989).

54. Brau, C. A. Free-Electron Lasers (Academic Press, 1990).

55. McNeil, B. W. J., Robb, G. R. M. & Jaroszynski, D. A. Self-amplification of coherent spontaneous emission in the free electron laser.

Opt. Commun. 165, 65–70 (1999).

Acknowledgements

This work was supported by the MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant Number

JPMXS0118070271.

Author contributions

H.Z. conceived the concept, performed the experiments, carried out the analysis of measured results by self-made

computer programs and prepared the initial manuscript. R.H conceived the concept, developed FEL simulation

code, performed FEL simulation, aided interpretation of the results, and provided substantial input into the

manuscript. H.O. directed and technically supervised the research and edited the manuscript. Figures 1–2 and

5 were prepared by H.Z. Figure 3 was prepared by H.Z. and R.H. Figure 4 was prepared by R.H.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​023-​33550-z.

Correspondence and requests for materials should be addressed to H.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023, corrected publication 2023

Scientific Reports |

(2023) 13:6350 |

https://doi.org/10.1038/s41598-023-33550-z

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る