リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Experimental study of internal flow structures in cylindrical rotating detonation engines」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Experimental study of internal flow structures in cylindrical rotating detonation engines

Yokoo, Ryuya Goto, Keisuke Kasahara, Jiro Athmanathan, Venkat Braun, James Paniagua, Guillermo Meyer, Terrence R. Kawasaki, Akira Matsuoka, Ken Matsuo, Akiko Funaki, Ikkoh 名古屋大学

2021

概要

The internal flow structures of detonation wave were experimentally analyzed in an optically accessible hollow rotating detonation combustor with multiple chamber lengths. The cylindrical RDC has a glass chamber wall, 20 mm in diameter, which allowed us to capture the combustion self-luminescence. A chamber 70 mm in length was first tested using C2H4-O2 and H2–O2 as propellants. Images with a strong self-luminescence region near the bottom were obtained, confirming the small extent of the region where most of the heat release occurs as found in our previous research. Based on the visualization experiments, we tested RDCs with shorter chamber walls of 40 and 20 mm. The detonation wave was also observed in the shorter chambers, and its velocity was not affected by the difference in chamber length. Thrust performance was also maintained compared to the longer chamber, and the short cylindrical RDC had the same specific impulse tendency as the cylindrical (hollow) or annular 70-mm chamber RDC. Finally, we calculated the pressure distributions of various chamber lengths, and found they were also consistent with the measured pressure at the bottom and exit. We concluded that the short-chamber cylindrical RDC with equal length and diameter maintained thrust performance similar to the longer annular RDC, further expanding the potential of compact RDCs.

この論文で使われている画像

参考文献

[1] W. Fickett, W. C. Davis, Detonation: Theory and Experiment, Dover Publications, New York, 2000.

[2] J. H. S. Lee, The Detonation Phenomenon, Cambridge University Press, Cambridge, 2008.

[3] P. Wolanski, Detonative Propulsion, Proc. Combust. Inst. 34 (1) (2013) 125-158.

[4] K. Kailasanath, Review of Propulsive Applications of Detonation Waves, AIAA J. 38 (9) (2000) 1698–1708.

[5] F. K. Lu, E. M. Braun, Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts, J. Propul. Power 30 (5) (2014) 1125-1142.

[6] G. D. Roy, S. M. Frolov, A. A. Borisov, D. W. Netzer, Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective, Prog. Energy Combust. Sci. 30 (6) (2004) 545-672.

[7] M. Yamaguchi, K. Matsuoka, A. Kawasaki, J. Kasahara, H. Watanabe, A. Matsuo, Supersonic combustion induced by reflective shuttling shock wave in fan-shaped two-dimensional combustor, Proc. Combust. Inst. 37 (3) (2019) 3741-3747

[8] B. A. Rankin, D. R. Richardson, A. W. Caswell, A. G. Naples, J. L. Hoke, F. R. Schauer, Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine, Combust. Flame 176 (2017) 12-22.

[9] B. A. Rankin, J. R. Codoni, K. Y. Cho, J. L. Hoke, F. R. Schauer, Investigation of the structure of detonation waves in a non-premixed hydrogen–air rotating detonation engine using mid-infrared imaging, Proc. Combust. Inst. 37 (3) (2019) 3479-3486.

[10] F. Chacon, M. Gamba, Study of Parasitic Combustion in an Optically Accessible Continuous Wave Rotating Detonation Engine, AIAA Scitech 2019 Forum, San Diego, 2019, 2019-0473.

[11] F. Chacon, M. Gamba, OH PLIF Visualization of an Optically Accessible Rotating Detonation Combustor, AIAA Propul. Energy Forum 2019, Indianapolis, 2019.

[12] M. D. Bohon, R. Bluemner, C. O. Paschereit, E. J. Gutmark, High-speed imaging of wave modes in an RDC, Exp. Therm. Fluid Sci. 102 (2019) 28-37.

[13] V. Athmanathan, J. Braun, Z. Ayers, J. Fisher, C. A. Fugger, S. Roy, G. Paniagua, T. R. Meyer, Detonation structure evolution in an optically-accessible non-premixed H2-Air RDC using MHz rate imaging, AIAA Scitech 2020 Forum, Orlando, 2020, 2020-1178.

[14] C. Knowlen, E. A. Wheeler, M. Kurosaka. Thrusting Pressure and Supersonic Exhaust Velocity in a Rotating Detonation Engine, 2018 AIAA Aerospace Sci. Meeting, Kissimmee, 2018, 2018-1884.

[15] K. Goto, J. Nishimura, A. Kawasaki, K. Matsuoka, J. Kasahara, A. Matsuo, I. Funaki, D. Nakata, M. Uchiumi, K. Higashino, Propulsive Performance and Heating Environment of Rotating Detonation Engine with Various Nozzles, J. Propul. Power, 35 (1) (2019) 213-223.

[16] X. M. Tang, J. P. Wang, Y. T. Shao, Three-Dimensional Numerical Investigations of the Rotating Detonation Engine with a Hollow Combustor, Combust. Flame 162 (4) (2015) 997-1008.

[17] W. Lin, J. Zhou, S. Liu, Z. Lin, An Experimental Study on CH4/O2 Continuously Rotating Detonation Wave in a Hollow Combustion Chamber, Exp. Therm. Fluid Sci. 62 (2015) 122-130.

[18] V. Anand, A. C. St. George, E. J. Gutmark, Hollow Rotating Detonation Combustor, 54th AIAA Aerospace Sci. Meeting, San Diego, 2016, 2016-0124.

[19] A. Kawasaki, T. Inakawa, J. Kasahara, K. Goto, K. Matsuoka, A. Matsuo, I. Funaki, Critical Condition of Inner Cylinder Radius for Sustaining Rotating Detonation Waves in Rotating Detonation Engine Thruster, Proc. Combust. Inst. 37 (3) (2019) 3461-3469.

[20] R. Yokoo, K. Goto, J. Kim, A. Kawasaki, K. Matsuoka, J. Kasahara, A. Matsuo, I. Funaki, Propulsion Performance of Cylindrical Rotating Detonation Engine, AIAA J. (2019) Published Online.

[21] R. W. Schefer, W. D. Kulatilaka, B. D. Patterson, T. B. Settersten, Visible emission of hydrogen flames, Combust. Flame 156 (6) (2009) 1234-1241.

[22] A. G. Gaydon, The Spectroscopy of Flames, 2nd ed., Chapman and Hall, London, 1974.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る