リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Attractor detection and enumeration algorithms for Boolean networks」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Attractor detection and enumeration algorithms for Boolean networks

Mori, Tomoya Akutsu, Tatsuya 京都大学 DOI:10.1016/j.csbj.2022.05.027

2022.05

概要

The Boolean network (BN) is a mathematical model used to represent various biological processes such as gene regulatory networks. The state of a BN is determined from the previous state and eventually reaches a stable state called an attractor. Due to its significance for elucidating the whole system, extensive studies have been conducted on analysis of attractors. However, the problem of detecting an attractor from a given BN has been shown to be NP-hard, and for general BNs, the time complexity of most existing algorithms is not guaranteed to be less than O(2[n]). Therefore, the computational difficulty of attractor detection has been a big obstacle for analysis of BNs. This review highlights singleton/periodic attractor detection algorithms that have guaranteed computational complexities less than O(2[n]) time for particular classes of BNs under synchronous update in which the maximum indegree is limited to a constant, each Boolean function is AND or OR of literals, or each Boolean function is given as a nested canalyzing function. We also briefly review practically efficient algorithms for the problem.

この論文で使われている画像

参考文献

[1] Kauffman SA. Metabolic stability and epigenesis in randomly constructed

genetic nets. J Theor Biol 1969;22(3):437–67. https://doi.org/10.1016/00225193(69)90015-0.

[2] Kauffman SA. Homeostasis and differentiation in random genetic control

networks. Nature 1969;224(5215):177–8.

[3] Kauffman SA. The origin of order: self-organization and selection in

evolution. New York: Oxford University Press; 1993.

[4] Kauffman SA. Metabolic stability and epigenesis in randomly constructed

genetic nets. J Theoret Biol 2010;22:437–67. https://doi.org/10.1016/00225193(69)90015-0.

[5] Cheng D, Qi H, Li Z. Analysis and control of Boolean networks: a semi-tensor

product approach. London, UK: Springer-Verlag; 2011.

2519

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

T. Mori and T. Akutsu

Computational and Structural Biotechnology Journal 20 (2022) 2512–2520

[65] Devloo V, Hansen P, Labbé M. Identification of all steady states in large

networks by logical analysis. Bull Math Biol 2003;65(6):1025–51. https://doi.

org/10.1016/S0092-8240(03)00061-2.

[66] Inoue K. Logic programming for Boolean networks. In: Proceedings of the 22nd

International Joint Conference on Artificial Intelligence. p. 924–30. https://doi.

org/10.5591/978-1-57735-516-8/IJCAI11-160.

[67] Abdallah EB, Folschette M, Roux O, Magnin M. Asp-based method for the

enumeration of attractors in non-deterministic synchronous and

asynchronous multi-valued networks. Algorithms Mol Biol 2017;12(20).

https://doi.org/10.1186/s13015-017-0111-2.

[68] Dubrova E, Teslenko M, Martinelli A. Kaufmann networks: analysis and

applications. In: Proceedings of IEEE/ACM International Conference on

Computer-Aided

Design.

p.

479–84.

https://doi.org/10.1109/

ICCAD.2005.1560115.

[69] Garg A, Cara AD, Xenarios I, Mendoza L, Micheli GD. Synchronous versus

asynchronous modeling of gene regulatory networks. Bioinformatics 2008;24

(17):1917–25. https://doi.org/10.1093/bioinformatics/btn336.

[70] Zheng D, Yang G, Li X, Wang Z, Liu F, He L. An efficient algorithm for computing

attractors of synchronous and asynchronous Boolean networks. PLoS ONE

2013;8(4):e60593.

[71] Akutsu T, Zhao Y, Hayashida M, Tamura T. Integer programming-based

approach to attractor detection and control of Boolean networks. IEICE Trans

Inf Syst 2012;E95-D(12):2960–70. https://doi.org/10.1587/transinf.E95.

D.2960.

[72] Klarner H, Bockmayr A, Siebert H. Computing symbolic steady states of

Boolean networks. In: Cellular Automata. ACRI 2014. Lecture Notes in

Computer Science; vol. 8751. Springer, Cham; 2014, p. 561–570. DOI:

10.1007/978-3-319-11520-7_59..

[73] Kobayashi K, Hiraishi K. ILP/SMT-based method for design of Boolean

networks based on singleton attractors. IEEE/ACM Trans Comput Biol

Bioinform 2010;11(4):1253–9. https://doi.org/10.1109/TCBB.2014.2325011.

[74] Veliz-Cuba A. Reduction of Boolean network models. J Theor Biol

2011;289:167–72. https://doi.org/10.1016/j.jtbi.2011.08.042.

[75] Veliz-Cuba A, Aguilar B, Hinkelmann F, Laubenbacher R. Steady state analysis

of Boolean molecular network models via model reduction and computational

algebra. BMC Bioinformatics 2014;15(221).

[76] He Q, Xia Z, Lin B. An efficient approach of attractor calculation for large-scale

Boolean gene regulatory networks. J Theor Biol 2016;408:137–44. https://doi.

org/10.1016/j.jtbi.2016.08.006.

[77] Saadatpour A, Albert R, Reluga TC. A reduction method for Boolean network

models proven to conserve attractors. SIAM J Appl Dyn Syst 2013;12

(4):1997–2011. https://doi.org/10.1137/13090537X.

[78] Beneš N, Brim L, Pastva S, Šafránek D. Computing bottom SCCs symbolically

using transtion guided reduction. In: International Conference on Computer

Aided Verification. Cham: Springer; 2021. p. 505–28. https://doi.org/10.1007/

978-3-030-81685-8_24.

[79] Gao Z, Chen X, Basßar T. Stability structures of conjunctive Boolean networks.

Automatica 2018;89:8–20. https://doi.org/10.1016/j.automatica.2017.11.017.

[80] Chen X, Gao Z, Basßar T. Asymptotic behavior of conjunctive Boolean networks

over weakly connected digraphs. IEEE Trans Automat Contr 2019;65

(6):2536–49. https://doi.org/10.1109/TAC.2019.2930675.

[81] Irons DJ. Improving the efficiency of attractor cycle identification in Boolean

networks.

Physica

2006;217(1):7–21.

https://doi.org/10.1016/

j.physd.2006.03.006.

[82] Su C, Pang J, Paul S. Towards optimal decomposition of Boolean networks.

IEEE/ACM Trans Comput Biol Bioinform 2021;18(6):2167–76. https://doi.org/

10.1109/TCBB.2019.2914051.

[83] Zañudo JGT, Albert R. An effective network reduction approach to find the

dynamical repertoire of discrete dynamic networks. Chaos 2013;23(025111).

https://doi.org/10.1063/1.4809777.

[84] Klarner H, Siebert H. Approximating attractors of Boolean networks by

iterative CTL model checking. Front Bioeng Biotechnol 2015;3(130). https://

doi.org/10.3389/fbioe.2015.00130.

[85] Choo SM, Cho KH. An efficient algorithm for identifying primary phenotype

attractors of a large-scale Boolean network. BMC Syst Biol 2016;10(95).

https://doi.org/10.1186/s12918-016-0338-4.

[86] Tamaki H. A directed path-decomposition approach to exactly identifying

attractors of Boolean networks. In: Proceedings of 10th International

Symposium on Communication and Information Technologies. p. 844–9.

https://doi.org/10.1109/ISCIT.2010.5665106.

[87] Skodawessely T, Klemm K. Finding attractors in asynchronous Boolean

dynamics. Adv Complex Syst 2011;14:439–49. https://doi.org/10.1142/

S0219525911003098.

[88] Lu J, Li H, Liu Y, Li F. Survey on semi-tensor product method with its

applications in logical networks and other finite-valued systems. IET Control

Theory Appl 2017;11(13):2040–7. https://doi.org/10.1049/iet-cta.2016.1659.

[89] Zhao Y, Ghosh BK, Cheng D. Control of large-scale Boolean networks via

network aggregation. IEEE Trans Neural Netw Learn Syst 2016;27(7):1527–36.

https://doi.org/10.1109/TNNLS.2015.2442593.

[90] Liu X, Wang Y, Shi N, Ji Z, He S. GAPORE: Boolean network inference using a

genetic algorithm with novel polynomial representation and encoding

scheme.

Knowl-Based

Syst

2021;228:.

https://doi.org/10.1016/

j.knosys.2021.107277107277.

[35] Aldana M, Coppersmith S, Kadanoff LP. Boolean dynamics with random

couplings. In: Kaplan E, Marsden J, Sreenivasan K, editors. Perspectives and

Problems in Nolinear Science. New York NY: Springer; 2003. p. 23–89. https://

doi.org/10.1007/978-0-387-21789-5_2.

[36] Harvey I, Bossomaier T. Time out of joint: attractors in asynchronous random

Boolean networks. In: Proceedings of 4th European Conference on Artificial

Life. p. 67–75.

[37] Mochizuki A. An analytical study of the number of steady states in gene

regulatory networks. J Theor Biol 2005;236(3):291–310. https://doi.org/

10.1016/j.jtbi.2005.03.015.

[38] Drossel B, Mihaljev T, Greil F. Number and length of attractors in a critical

Kauffman model with connectivity one. Phys Rev Lett 2005;94(8):. https://doi.

org/10.1103/PhysRevLett.94.088701088701.

[39] Samuelsson B, Troein C. Superpolynomial growth in the number of attractors

in Kauffman networks. Phys Rev Lett 2003;90(9):. https://doi.org/10.1103/

PhysRevLett.90.098701098701.

[40] Thomas R. Regulatory networks seen as asynchronous automata: a logical

description. J Theoretical Biol 1991;153(1):1–23. https://doi.org/10.1016/

S0022-5193(05)80350-9.

[41] Mizera A, Pang J, Qu H, Yuan Q. Taming asynchrony for attractor detection in

large Boolean networks. IEEE/ACM Trans Comput Biol Bioinform 2019;16

(1):31–42. https://doi.org/10.1109/TCBB.2018.2850901.

[42] Giang TV, Akutsu T, Hiraishi K. An FVS-based approach to attractor detection in

asynchronous random Boolean networks. IEEE/ACM Trans Comput Biol

Bioinform 2022;19(2):806–18. https://doi.org/10.1109/TCBB.2020.3028862.

[43] Chatain T, Haar S, Paulevé L. Most permissive semantics of boolean networks.

arXiv 2018;10.48550/arXiv. 1808.10240..

[44] de Jong H, Page M. Search for steady states of piecewise-linear differential

equation models of genetic regulatory networks. IEEE/ACM Trans Comput Biol

Bioinform 2008;5(2):208–22. https://doi.org/10.1109/TCBB.2007.70254.

[45] Dubrova E, Teslenko M. A SAT-based algorithm for finding attractors in

synchronous Boolean networks. IEEE/ACM Trans Comput Biol Bioinform

2011;8(5):1393–9. https://doi.org/10.1109/TCBB.2010.20.

[46] Leone M, Pagnani A, Parisi G, Zagordi O. Finite size corrections to random

Boolean networks. J Stat Mech 2006. https://doi.org/10.1088/1742-5468/

2006/12/P12012.

[47] Balyo T, Heule M, Jarvisalo M. SAT competition 2016: recent developments. In:

Proceedings of the 31st AAAI Conference on Artificial Intelligence. p. 5061–3.

[48] Makino K, Tamaki S, Yamamoto M. Derandomizing the HSSW algorithm for 3SAT. Algorithmica 2013;67(2):112–24. https://doi.org/10.1007/978-3-64222685-4_1.

[49] Levy H, Low DW. A contraction algorithm for finding small cycle cutlets. J

Algorithms 1988;9(4):470–93.

[50] Chen J, Fomin FV, Liu Y, Lu S, Villanger Y. Improved algorithms for feedback

vertex set problems. J Comput Syst Sci 2008;74(7):1188–98. https://doi.org/

10.1016/j.jcss.2008.05.002.

[51] Li J, Nederlof J. Detecting feedback vertex sets of size k in o⁄(2.7k) time. In:

Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms

(SODA). p. 971–89. https://doi.org/10.1137/1.9781611975994.58.

[52] Mochizuki A, Fiedler B, Kurosawa G, Saito D. Dynamics and control at feedback

vertex sets. II: a faithful monitor to determine the diversity of molecular

activities in regulatory networks. J Theor Biol 2013;335:130–46. https://doi.

org/10.1016/j.jtbi.2013.06.009.

[53] Mori F, Mochizuki A. Expected number of fixed points in Boolean networks

with arbitrary topology. Phys Rev Lett 2017;119(2). https://doi.org/10.1103/

PhysRevLett.119.028301.

[54] Zhang SQ, Hayashida M, Akutsu T, Ching WK, Ng MK. Algorithms for finding

small attractors in Boolean networks. EURASIP J Bioinform Syst Biol 2007;2007

(1). https://doi.org/10.1155/2007/20180.

[55] Tamura T, Akutsu T. Detection a singleton attractor in a Boolean network

utilizing SAT algorithms. IEICE Trans Fundamentals 2009;E92-A(2):493–501.

https://doi.org/10.1587/transfun.E92.A.493.

[56] Yamamoto M. An improved O(1.234

)-time deterministic algorithm for SAT.

In: Proceedings of 16th International Symposium on Algorithms and

Computation (Lecture Notes in Computer Science 3827). p. 644–53. https://

doi.org/10.1007/11602613_65.

[57] Melkman AA, Tamura T, Akutsu T. Determining a singleton attractor of an

AND/OR Boolean network in O(1.587n) time. Inf Process Lett 2010;110(14–

15):565–9. https://doi.org/10.1016/j.ipl.2010.05.001.

[58] Chu H, Xiao M, Zhang Z. An improved upper bound for SAT. Theoret Comput

Sci 2021;887:51–62. https://doi.org/10.1016/j.tcs.2021.06.045.

[59] Flum J, Grohe M. Parameterized complexity theory. Berlin: Springer; 2006.

[60] Fomin FV, Kratsch D. Exact exponential algorithms. Berlin: Springer; 2010.

[61] Akutsu T, Kosub S, Melkman AA, Tamura T. Finding a periodic attractor of a

Boolean networks. IEEE/ACM Trans Comput Biol Bioinform 2012;9

(5):1410–21. https://doi.org/10.1109/TCBB.2012.87.

[62] Chang CJ, Tamura T, Chao KM, Akutsu T. A fixed-parameter algorithm for

detecting a singleton attractor in an AND/OR Boolean network with bounded

treewidth. IEICE Trans Fundamentals 2015;98-A(1):384–90. https://doi.org/

10.1587/transfun.E98.A.384.

[63] Freuder EC. Complexity of k-tree structured constraint satisfaction problems.

In: Proceedings of the 8th AAAI Conference on Artificial Intelligence. p. 4–9.

[64] Just W. The steady state system problem is NP-hard even for monotone

quadratic Boolean dynamical systems; 2006. Preprint available at http://

www.ohio.edu/people/just/publ.html..

2520

...

参考文献をもっと見る