リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Unraveling microforging principle during in situ shot-peening-assisted cold spray additive manufacturing aluminum alloy through a multi-physics framework」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Unraveling microforging principle during in situ shot-peening-assisted cold spray additive manufacturing aluminum alloy through a multi-physics framework

Wang, Qian 大阪大学

2023.12.01

概要

Additive manufacturing (AM) is an umbrella term for techniques that
stack materials on top of each other to create entities. It is flourishing
owing to the remarkable design flexibility [1–3]. For the AM of metallic
materials, various fusion-based AM techniques (e.g., direct laser depo­
sition [4–6], wire arc AM [7,8], and electron beam melting [9]) that
directly build parts or components through the layer-upon-layer melting
and solidification of metals have been initiated and researched exten­
sively within the past decades. Metal melting ensures reliable bonding
among layers; however, the rapid solidification tends to induce notice­
able thermal stress/deformation/cracking [4,6,8,10,11], element
segregation/oxidation/evaporation [4,9,11–13], grain growth/coars­
ening [4,7,14,15], phase transformation [4,11,16], etc. ...

この論文で使われている画像

参考文献

(10)

[1] M. Parsazadeh, S. Sharma, N. Dahotre, Towards the next generation of machine

learning models in additive manufacturing: a review of process dependent material

evolution, Prog. Mater. Sci. 135 (2023), 101102.

[2] G. Liu, X. Zhang, X. Chen, Y. He, L. Cheng, M. Huo, J. Yin, F. Hao, S. Chen,

P. Wang, S. Yi, Additive manufacturing of structural materials, Mater. Sci. Eng. RRep. 145 (2021), 100596.

[3] I. Gibson, D. Rosen, B. Stucker, M. Khorasani, D. Rosen, B. Stucker, M. Khorasani,

Additive Manufacturing Technologies, third ed., Springer Cham, Switzerland,

2021.

[4] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.

M. Beese, A.D. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic

components–process, structure and properties, Prog. Mater. Sci. 92 (2018)

112–224.

[5] S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, An overview of Direct Laser

Deposition for additive manufacturing; Part I: transport phenomena, modeling and

diagnostics, Addit. Manuf. 8 (2015) 36–62.

[6] N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, An overview of Direct Laser

Deposition for additive manufacturing; Part II: mechanical behavior, process

parameter optimization and control, Addit. Manuf. 8 (2015) 12–35.

[7] J.P. Oliveira, T.G. Santos, R.M. Miranda, Revisiting fundamental welding concepts

to improve additive manufacturing: from theory to practice, Prog. Mater. Sci. 107

(2020), 100590.

[8] D. Jafari, T.H. Vaneker, I. Gibson, Wire and arc additive manufacturing:

opportunities and challenges to control the quality and accuracy of manufactured

parts, Mater. Des. 202 (2021), 109471.

[9] A. Palmquist, M. Jolic, E. Hryha, F.A. Shah, Complex geometry and integrated

macro-porosity: clinical applications of electron beam melting to fabricate bespoke

bone-anchored implants, Acta Biomater. 156 (2023) 125–145.

[10] W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, The metallurgy and

processing science of metal additive manufacturing, Int. Mater. Rev. 61 (2016)

315–360.

[11] A. Mostafaei, R. Ghiaasiaan, I.T. Ho, S. Strayer, K.C. Chang, N. Shamsaei, S. Shao,

S. Paul, A.C. Yeh, S. Tin, A.C. To, Additive manufacturing of nickel-based

superalloys: a state-of-the-art review on process-structure-defect-property

relationship, Prog. Mater. Sci. 136 (2023), 101108.

[12] T. Hauser, R.T. Reisch, P.P. Breese, Y. Nalam, K.S. Joshi, K. Bela, T. Kamps,

J. Volpp, A.F. Kaplan, Oxidation in wire arc additive manufacturing of aluminium

alloys, Addit. Manuf. 41 (2021), 101958.

[13] S. Thapliyal, P. Agrawal, P. Agrawal, S.S. Nene, R.S. Mishra, B.A. McWilliams, K.

C. Cho, Segregation engineering of grain boundaries of a metastable Fe-Mn-Co-CrSi high entropy alloy with laser-powder bed fusion additive manufacturing, Acta

Mater. 219 (2021), 117271.

where DE(P), DE(P + S), and ηe represent the individual DE dissipated

through the overall extreme deformation of a single AA6061 micro­

particle (≈ 3.2 × 104 nJ), the total DE dissipated by the AA6061

microparticle and substrate (≈ 2.8 × 106 nJ), and the deposition effi­

ciency of AA6061 microparticles (≈ 40 %), respectively. Therefore, Ømin

is estimated to be 69.60 vol%. Its high agreement with the actual one

(70 vol%) further confirms the validity of simulations. More impor­

tantly, the microforging principle during in situ shot-peening-assisted

CSAM is fully unraveled with the help of simulations, demonstrating

the model’s potential to guide process optimization.

6. Conclusions

Fully dense AA6061 deposits with uniform ultra-fine grains were

fabricated by in situ shot-peening-assisted CSAM using low-cost

renewable nitrogen gas and recyclable large-size SS410 particles. A

multi-physics framework using dislocation dynamics was developed to

identify its similarities and differences with conventional CSAM to un­

ravel the microforging principle. Simulations were fully validated by

comparing the model-reproduced and experimental deformations, grain

refinement, microhardness increase, and volume ratio of large-size

SS410 particles required to achieve full densification of the deposit. In

situ shot-peening particles, despite having half the Vi of deposited mi­

croparticles, deliver two orders of magnitude higher KE. The enormous

KE allows overall extreme deformation accompanied by overall grain

refinement of the deposited microparticles, significantly improving

microhardness and tensile strength. This work can provide scientific

guidelines for high-quality and low-cost CSAM of high-strength Al al­

loys, contributing to SDGs and carbon neutrality. What is more, the

13

Q. Wang et al.

Materials & Design 236 (2023) 112451

[41] T. Schmidt, F. G¨

artner, H. Assadi, H. Kreye, Development of a generalized

parameter window for cold spray deposition, Acta Mater. 54 (2006) 729–742.

[42] I. Dowding, M. Hassani, Y. Sun, D. Veysset, K.A. Nelson, C.A. Schuh, Particle size

effects in metallic microparticle impact-bonding, Acta Mater. 194 (2020) 40–48.

[43] N. Fan, J. Cizek, C. Huang, X. Xie, Z. Chlup, R. Jenkins, R. Lupoi, S. Yin, A new

strategy for strengthening additively manufactured cold spray deposits through inprocess densification, Addit. Manuf. 36 (2020), 101626.

[44] X. Luo, Y. Wei, J. Shen, N. Ma, C.J. Li, Breaking the trade off between corrosion

resistance and fatigue lifetime of the coated Mg alloy through cold spraying

submicron-grain Al alloy coatings, J. Magnes. Alloy. (2023). In Press.

[45] B.L. James, V.S. Bhattiprolu, G.A. Crawford, B.K. Jasthi, Effect of zirconia

secondary peening on the microstructure and mechanical behavior of Al6061 cold

spray coatings, Surf. Coat. Technol. 436 (2022), 128269.

[46] X.T. Luo, M.L. Yao, N. Ma, M. Takahashi, C.J. Li, Deposition behavior,

microstructure and mechanical properties of an in-situ micro-forging assisted cold

spray enabled additively manufactured Inconel 718 alloy, Mater. Des. 155 (2018)

384–395.

[47] H. Zhou, C. Li, G. Ji, S. Fu, H. Yang, X. Luo, G. Yang, C. Li, Local microstructure

inhomogeneity and gas temperature effect in in-situ shot-peening assisted coldsprayed Ti-6Al-4V coating, J. Alloy. Compd. 766 (2018) 694–704.

[48] D. Veysset, J.H. Lee, M. Hassani, S.E. Kooi, E.L. Thomas, K.A. Nelson, High-velocity

micro-projectile impact testing, Appl. Phys. Rev. 8 (2021), 011319.

[49] M. Hassani, D. Veysset, Y. Sun, K.A. Nelson, C.A. Schuh, Microparticle impactbonding modes for mismatched metals: from co-deformation to splatting and

penetration, Acta Mater. 199 (2020) 480–494.

[50] M. Hassani-Gangaraj, D. Veysset, K.A. Nelson, C.A. Schuh, In-situ observations of

single micro-particle impact bonding, Scr. Mater. 145 (2018) 9–13.

[51] X. Wang, F. Feng, M.A. Klecka, M.D. Mordasky, J.K. Garofano, T. El-Wardany,

A. Nardi, V.K. Champagne, Characterization and modeling of the bonding process

in cold spray additive manufacturing, Addit. Manuf. 8 (2015) 149–162.

[52] K. Yang, W. Li, X. Guo, X. Yang, Y. Xu, Characterizations and anisotropy of coldspraying additive-manufactured copper bulk, J. Mater. Sci. Technol. 34 (2018)

1570–1579.

[53] P. Gao, C. Zhang, R. Wang, G. Deng, J. Li, L. Su, Tamping effect during additive

manufacturing of copper coating by cold spray: a comprehensive molecular

dynamics study, Addit. Manuf. 66 (2023), 103448.

[54] A.A. Hemeda, C. Zhang, X.Y. Hu, D. Fukuda, D. Cote, I.M. Nault, A. Nardi, V.

K. Champagne, Y. Ma, J.W. Palko, Particle-based simulation of cold spray:

influence of oxide layer on impact process, Addit. Manuf. 37 (2021), 101517.

[55] Q. Wang, N. Ma, M. Takahashi, X. Luo, C. Li, Development of a material model for

predicting extreme deformation and grain refinement during cold spraying, Acta

Mater. 199 (2020) 326–339.

[56] Q. Wang, N. Ma, X.T. Luo, C.J. Li, Towards better understanding supersonic

impact-bonding behavior of cold sprayed 6061–T6 aluminum alloy based on a

high-accuracy material model, Addit. Manuf. 48 (2021), 102469.

[57] Q. Wang, N. Ma, X.T. Luo, C.J. Li, Capturing cold-spray bonding features of pure Cu

from in situ deformation behavior using a high-accuracy material model, Surf.

Coat. Technol. 413 (2021), 127087.

[58] B. Yildirim, H. Yang, A. Gouldstone, S. Müftü, Rebound mechanics of micrometrescale, spherical particles in high-velocity impacts, Proc. R. Soc. A-Math. Phys. Eng.

Sci. 473 (2017) 20160936.

[59] S.M. Hassani-Gangaraj, K.S. Cho, H.J. Voigt, M.A. Guagliano, C.A. Schuh,

Experimental assessment and simulation of surface nanocrystallization by severe

shot peening, Acta Mater. 97 (2015) 105–115.

[60] H. Liu, X. Xu, J. Zhang, Z. Liu, Y. He, W. Zhao, Z. Liu, The state of the art for

numerical simulations of the effect of the microstructure and its evolution in the

metal-cutting processes, Int. J. Mach. Tools Manuf. 177 (2022), 103890.

[61] W. Zhang, X. Wang, Y. Hu, S. Wang, Predictive modelling of microstructure

changes, micro-hardness and residual stress in machining of 304 austenitic

stainless steel, Int. J. Mach. Tools Manuf. 130 (2018) 36–48.

[62] B. Tekkaya, M. Meurer, M. D¨

olz, M. K¨

onemann, S. Münstermann, T. Bergs,

Modeling of microstructural workpiece rim zone modifications during hard

machining, J. Mater. Process. Technol. 311 (2023), 117815.

[63] H. Liu, J. Zhang, B. Xu, X. Xu, W. Zhao, Prediction of microstructure gradient

distribution in machined surface induced by high speed machining through a

coupled FE and CA approach, Mater. Des. 196 (2020), 109133.

[64] Y. Hu, S. Wu, Y. Guo, Z. Shen, A.M. Korsunsky, Y. Yu, X. Zhang, Y. Fu, Z. Che,

T. Xiao, S. Lozano-Perez, Inhibiting weld cracking in high-strength aluminium

alloys, Nat. Commun. 13 (2022) 5816.

[65] Y. Ichikawa, R. Tokoro, M. Tanno, K. Ogawa, Elucidation of cold-spray deposition

mechanism by auger electron spectroscopic evaluation of bonding interface oxide

film, Acta Mater. 164 (2019) 39–49.

[66] R. Nikbakht, S.H. Seyedein, S. Kheirandish, H. Assadi, B. Jodoin, Asymmetrical

bonding in cold spraying of dissimilar materials, Appl. Surf. Sci. 444 (2018)

621–632.

[67] H. Liu, K. Ushioda, H. Fujii, Elucidation of interface joining mechanism during

friction stir welding through Cu/Cu-10Zn interfacial observations, Acta Mater. 166

(2019) 324–334.

[68] A.A. Tiamiyu, C.A. Schuh, Particle flattening during cold spray: mechanistic

regimes revealed by single particle impact tests, Surf. Coat. Technol. 403 (2020),

126386.

[14] Y. Liu, J. Zhang, Q. Tan, Y. Yin, S. Liu, M. Li, M. Li, Q. Liu, Y. Zhou, T. Wu, F. Wang,

Additive manufacturing of high strength copper alloy with heterogeneous grain

structure through laser powder bed fusion, Acta Mater. 220 (2021), 117311.

[15] A.F. Chadwick, P.W. Voorhees, The development of grain structure during additive

manufacturing, Acta Mater. 211 (2021), 116862.

[16] Q. Guo, M. Qu, C.A. Chuang, L. Xiong, A. Nabaa, Z.A. Young, Y. Ren, P. Kenesei,

F. Zhang, L. Chen, Phase transformation dynamics guided alloy development for

additive manufacturing, Addit. Manuf. 59 (2022), 103068.

[17] Q. Chen, W. Xie, V.K. Champagne, A. Nardi, J.H. Lee, S. Müftü, On adiabatic shear

instability in impacts of micron-scale Al-6061 particles with sapphire and Al-6061

substrates, Int. J. Plast. 166 (2023), 103630.

[18] J.M. Flynn, A. Shokrani, S.T. Newman, V. Dhokia, Hybrid additive and subtractive

machine tools–Research and industrial developments, Int. J. Mach. Tools Manuf.

101 (2016) 79–101.

[19] W. Li, K. Yang, S. Yin, X. Yang, Y. Xu, R. Lupoi, Solid-state additive manufacturing

and repairing by cold spraying: a review, J. Mater. Sci. Technol. 34 (2018)

440–457.

[20] S. Bagherifard, J. Kondas, S. Monti, J. Cizek, F. Perego, O. Kovarik, F. Lukac,

F. Gaertner, M. Guagliano, Tailoring cold spray additive manufacturing of steel 316

L for static and cyclic load-bearing applications, Mater. Des. 203 (2021), 109575.

[21] S. Bagherifard, S. Monti, M.V. Zuccoli, M. Riccio, J. Kond´

as, M. Guagliano, Cold

spray deposition for additive manufacturing of freeform structural components

compared to selective laser melting, Mater. Sci. Eng. A-Struct. Mater. Prop.

Microstruct. Process. 721 (2018) 339–350.

[22] S. Pathak, G.C. Saha, Cold spray: its prominence as an additive manufacturing

technology, in: S. Pathak, G.C. Saha (Eds.), Cold Spray in the Realm of Additive

Manufacturing, Springer Cham, Switzerland, 2020, pp. 1–7.

[23] G. Prashar, H. Vasudev, A comprehensive review on sustainable cold spray additive

manufacturing: state of the art, challenges and future challenges, J. Clean Prod.

310 (2021), 127606.

[24] M. Diab, X. Pang, H. Jahed, The effect of pure aluminum cold spray coating on

corrosion and corrosion fatigue of magnesium (3% Al-1% Zn) extrusion, Surf. Coat.

Technol. 309 (2017) 423–435.

[25] T. Suhonen, T. Varis, S. Dosta, M. Torrell, J.M. Guilemany, Residual stress

development in cold sprayed Al, Cu and Ti coatings, Acta Mater. 61 (2013)

6329–6337.

[26] Y. Tao, T. Xiong, C. Sun, L. Kong, X. Cui, T. Li, G.L. Song, Microstructure and

corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium

alloy, Corrosion Sci. 52 (2010) 3191–3197.

[27] J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock,

3D printing of high-strength aluminium alloys, Nature 549 (2017) 365–369.

[28] N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, 3D printing

of aluminium alloys: additive manufacturing of aluminium alloys using selective

laser melting, Prog. Mater. Sci. 106 (2019), 100578.

[29] H.R. Kotadia, G. Gibbons, A. Das, P.D. Howes, A review of Laser Powder Bed Fusion

Additive Manufacturing of aluminium alloys: microstructure and properties, Addit.

Manuf. 46 (2021), 102155.

[30] R. Fu, Y. Guo, Y. Cui, J. Wang, H. Lei, C. Liu, Large-size ultra-high strengthplasticity aluminum alloys fabricated by wire arc additive manufacturing via added

nanoparticles, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 864

(2023), 144582.

[31] T. Paul, P. Nautiyal, C. Zhang, B. Boesl, A. Agarwal, Role of in-situ splat sintering

on elastic and damping behavior of cold sprayed aluminum coatings, Scr. Mater.

204 (2021), 114125.

[32] P. Nautiyal, C. Zhang, V.K. Champagne, B. Boesl, A. Agarwal, In-situ mechanical

investigation of the deformation of splat interfaces in cold-sprayed aluminum

alloy, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 737 (2018)

297–309.

[33] N. Hutasoit, M.A. Javed, R.A. Rashid, S. Wade, S. Palanisamy, Effects of build

orientation and heat treatment on microstructure, mechanical and corrosion

properties of Al6061 aluminium parts built by cold spray additive manufacturing

process, Int. J. Mech. Sci. 204 (2021), 106526.

[34] B. Aldwell, E. Kelly, R. Wall, A. Amaldi, G.E. O’Donnell, R. Lupoi, Machinability of

Al 6061 deposited with cold spray additive manufacturing, J. Therm. Spray

Technol. 26 (2017) 1573–1584.

[35] J.W. Murray, M.V. Zuccoli, T. Hussain, Heat treatment of cold-sprayed C355 Al for

repair: microstructure and mechanical properties, J. Therm. Spray Technol. 27

(2018) 159–168.

[36] S. Ngai, T. Ngai, F. Vogel, W. Story, G.B. Thompson, L.N. Brewer, Saltwater

corrosion behavior of cold sprayed AA7075 aluminum alloy coatings, Corrosion

Sci. 130 (2018) 231–240.

[37] V. Champagne, D. Helfritch, The unique abilities of cold spray deposition, Int.

Mater. Rev. 61 (2016) 437–455.

[38] M. Kim, L.N. Brewer, G.W. Kubacki, Microstructure and corrosion resistance of

chromate conversion coating on cold sprayed aluminum alloy 2024, Surf. Coat.

Technol. 460 (2023), 129423.

[39] P. Sirvent, M.A. Garrido, C.J. Munez, P. Poza, S. Vezzu, Effect of higher deposition

temperatures on the microstructure and mechanical properties of Al 2024 cold

sprayed coatings, Surf. Coat. Technol. 337 (2018) 461–470.

[40] X. Pan, W. He, L. Zhou, S. Shu, X. Ding, Q. Wang, S. Wen, N. Li, M. Yi, Y. Zhu,

J. Nan, Two laser beam modulation of microstructure and residual stress field in

cold sprayed Al alloy for recovering fatigue performance, Int. J. Plast. 164 (2023),

103598.

14

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る