リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Role of operating and environmental conditions in determining molten pool dynamics during electron beam melting and selective laser melting」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Role of operating and environmental conditions in determining molten pool dynamics during electron beam melting and selective laser melting

Yufan Zhao Kenta Aoyagi Kenta Yamanaka Akihiko Chiba 東北大学 DOI:10.1016/j.addma.2020.101559

2020.12

概要

Electron beam melting (EBM) and selective laser melting (SLM) are representative powder bed fusion additive manufacturing methods. Because EBM and SLM have different operating and environmental conditions, such as ambient pressure of the chamber, initial temperature, and heat source, they have molten pool dynamics. In this study, single-bead melting experiments using EBM and SLM were performed in conjunction with computational thermal-fluid dynamics simulations in high-energy conditions to highlight the differences in the molten pool dynamics of EBM and SLM. The experimental results reveal that SLM is more likely to melt in the keyhole mode than the EBM pool under nominally identical line energy. The simulations showed that the instantaneous maximum temperature of the SLM molten pool is much lower than that of the EBM molten pool. An increase in the preheating temperature is found to strengthen the vapor recoil pressure; however, the vapor recoil pressure under vacuum is maintained at a considerably low level in EBM. Compared to EBM, the high atmospheric pressure and multiple laser reflections during SLM significantly enhance the effect of the vapor recoil pressure on the melt surface. The findings of this study can be useful for the formulation of appropriate processing strategies for the two processes.

この論文で使われている画像

参考文献

[1] C. Körner, Additive manufacturing of metallic components by selective electron beam melting — a review, International Materials Reviews. 61 (2016) 361–377. doi:10.1080/09506608.2016.1176289.

[2] M. Galati, L. Iuliano, A literature review of powder-based electron beam melting focusing on numerical simulations, Additive Manufacturing. 19 (2018) 1–20. doi:10.1016/j.addma.2017.11.001.

[3] P.K. Gokuldoss, S. Kolla, J. Eckert, Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines, Materials. 10 (2017) 672. doi:10.3390/ma10060672.

[4] M. Galati, L. Iuliano, A. Salmi, E. Atzeni, Modelling energy source and powder properties for the development of a thermal FE model of the EBM additive manufacturing process, Additive Manufacturing. 14 (2017) 49–59. doi:10.1016/j.addma.2017.01.001.

[5] M.S. Brown, C.B. Arnold, Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification, in: Springer Series in Materials Science, Springer Verlag, 2010: pp. 91–120. doi:10.1007/978-3-642-10523-4_4.

[6] C. Körner, A. Bauereiß, E. Attar, Fundamental consolidation mechanisms during selective beam melting of powders, Modelling and Simulation in Materials Science and Engineering. 21 (2013) 085011. doi:10.1088/0965-0393/21/8/085011.

[7] H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, B. Stucker, Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting, Materials and Design. 86 (2015) 545–554. doi:10.1016/j.matdes.2015.07.147.

[8] Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Materialia. 113 (2016) 56–67. doi:10.1016/j.actamat.2016.04.029.

[9] D. Greitemeier, F. Palm, F. Syassen, T. Melz, Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting, International Journal of Fatigue. 94 (2017) 211–217. doi:10.1016/j.ijfatigue.2016.05.001.

[10] H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, M. Hu, A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting, PLOS ONE. 11 (2016) e0158513. doi:10.1371/journal.pone.0158513.

[11] B. Zhao, H. Wang, N. Qiao, C. Wang, M. Hu, Corrosion resistance characteristics of a Ti-6Al- 4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo, Materials Science and Engineering C. 70 (2017) 832–841. doi:10.1016/j.msec.2016.07.045.

[12] H. Gong, K. Rafi, H. Gu, T. Starr, B. Stucker, Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes, Additive Manufacturing. 1 (2014) 87–98. doi:10.1016/j.addma.2014.08.002.

[13] C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah, On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Materialia. 96 (2015) 72–79. doi:10.1016/j.actamat.2015.06.004.

[14] D. Gu, M. Xia, D. Dai, On the role of powder flow behavior in fluid thermodynamics and laser processability of Ni-based composites by selective laser melting, International Journal of Machine Tools and Manufacture. 137 (2019) 67–78. doi:10.1016/j.ijmachtools.2018.10.006.

[15] Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka, A. Chiba, Manipulating local heat accumulation towards controlled quality and microstructure of a Co-Cr-Mo alloy in powder bed fusion with electron beam, Materials Letters. 254 (2019) 269–272. doi:10.1016/j.matlet.2019.07.078.

[16] Y.S. Lee, M.M. Kirka, J. Ferguson, V.C. Paquit, Correlations of cracking with scan strategy and build geometry in electron beam powder bed additive manufacturing, Additive Manufacturing. 32 (2020) 101031. doi:10.1016/j.addma.2019.101031.

[17] L. Scime, J. Beuth, Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process, Additive Manufacturing. 29 (2019) 100830. doi:10.1016/j.addma.2019.100830.

[18] C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, P.D. Lee, In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing, Nature Communications. 9 (2018) 1–9. doi:10.1038/s41467-018-03734-7.

[19] H. Wong, D. Neary, E. Jones, P. Fox, C. Sutcliffe, Pilot feedback electronic imaging at elevated temperatures and its potential for in-process electron beam melting monitoring, Additive Manufacturing. 27 (2019) 185–198. doi:10.1016/j.addma.2019.02.022.

[20] C.L.A. Leung, S. Marussi, M. Towrie, J. del Val Garcia, R.C. Atwood, A.J. Bodey, J.R. Jones, P.J. Withers, P.D. Lee, Laser-matter interactions in additive manufacturing of stainless steel SS316L and 13-93 bioactive glass revealed by in situ X-ray imaging, Additive Manufacturing. 24 (2018) 647–657. doi:10.1016/j.addma.2018.08.025.

[21] Z. Gan, G. Yu, X. He, S. Li, Surface-active element transport and its effect on liquid metal flow in laser-assisted additive manufacturing, International Communications in Heat and Mass Transfer. 86 (2017) 206–214. doi:10.1016/j.icheatmasstransfer.2017.06.007.

[22] H. Salem, L.N. Carter, M.M. Attallah, H.G. Salem, Influence of processing parameters on internal porosity and types of defects formed in Ti6Al4V lattice structure fabricated by selective laser melting, Materials Science and Engineering A. 767 (2019) 138387. doi:10.1016/j.msea.2019.138387.

[23] Y. Yang, D. Gu, D. Dai, C. Ma, Laser energy absorption behavior of powder particles using ray tracing method during selective laser melting additive manufacturing of aluminum alloy, Materials and Design. 143 (2018) 12–19. doi:10.1016/j.matdes.2018.01.043.

[24] M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, J.H. Hattel, Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation, Additive Manufacturing. 30 (2019) 100835. doi:10.1016/j.addma.2019.100835.

[25] A. Bauereiß, T. Scharowsky, C. Körner, Defect generation and propagation mechanism during additive manufacturing by selective beam melting, Journal of Materials Processing Technology. 214 (2014) 2522–2528. doi:10.1016/J.JMATPROTEC.2014.05.002.

[26] A. Klassen, V.E. Forster, V. Juechter, C. Körner, Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl, Journal of Materials Processing Technology. 247 (2017) 280–288. doi:10.1016/J.JMATPROTEC.2017.04.016.

[27] W. Yan, W. Ge, J. Smith, S. Lin, O.L. Kafka, F. Lin, W.K. Liu, Multi-scale modeling of electron beam melting of functionally graded materials, Acta Materialia. 115 (2016) 403–412. doi:10.1016/j.actamat.2016.06.022.

[28] W. Yan, Y. Qian, W. Ge, S. Lin, W.K. Liu, F. Lin, G.J. Wagner, Meso-scale modeling of multiple-layer fabrication process in Selective Electron Beam Melting: Inter-layer/track voids formation, Materials & Design. 141 (2018) 210–219. doi:10.1016/J.MATDES.2017.12.031.

[29] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Materialia. 108 (2016) 36–45. doi:10.1016/j.actamat.2016.02.014.

[30] M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, Denudation of metal powder layers in laser powder bed fusion processes, Acta Materialia. 114 (2016) 33–42. doi:10.1016/j.actamat.2016.05.017.

[31] J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, B. Stucker, Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al- 4V alloy parts fabricated by selective laser melting, Progress in Additive Manufacturing. 2 (2017) 157–167. doi:10.1007/s40964-017-0030-2.

[32] J. Gockel, J. Beuth, K. Taminger, Integrated control of solidification microstructure and melt pool dimensions in electron beam wire feed additive manufacturing of ti-6al-4v, Additive Manufacturing. 1 (2014) 119–126. doi:10.1016/j.addma.2014.09.004.

[33] X. Ding, Y. Koizumi, D. Wei, A. Chiba, Effect of process parameters on melt pool geometry and microstructure development for electron beam melting of IN718: A systematic single bead analysis study, Additive Manufacturing. 26 (2019) 215–226. doi:10.1016/j.addma.2018.12.018.

[34] M. Galati, A. Snis, L. Iuliano, Experimental validation of a numerical thermal model of the EBM process for Ti6Al4V, Computers and Mathematics with Applications. 78 (2019) 2417– 2427. doi:10.1016/j.camwa.2018.07.020.

[35] GE, Arcam EBM A2X - EBM Machine| GE Additive, (n.d.). https://www.ge.com/additive/additive-manufacturing/machines/ebm-machines/arcam-ebm- a2x (accessed June 2, 2020).

[36] ConceptLaser, Concept Laser M2 cusing, (n.d.). http://www.4c.com.tr/en/m2-cusing.html (accessed June 2, 2020).

[37] M. Galati, P. Minetola, G. Rizza, Surface roughness characterisation and analysis of the Electron Beam Melting (EBM) process, Materials. 12 (2019). doi:10.3390/ma12132211.

[38] FLOW-3D® Version 11.2 [Computer software]. (2017). Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com.

[39] Y.S. Lee, W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Additive Manufacturing. 12 (2016) 178–188. doi:10.1016/j.addma.2016.05.003.

[40] H. Wang, Y. Zou, Microscale interaction between laser and metal powder in powder-bed additive manufacturing: Conduction mode versus keyhole mode, International Journal of Heat and Mass Transfer. 142 (2019). doi:10.1016/j.ijheatmasstransfer.2019.118473.

[41] S.A. Khairallah, A. Anderson, A.M. Rubenchik, J. Florando, S. Wu, H. Lowdermilk, Simulation of the main physical processes in remote laser penetration with large laser spot size, AIP Advances. 5 (2015) 047120. doi:10.1063/1.4918284.

[42] J. Schou, Risø, Laser-beam interactions with materials: Physical principles and applications, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 124 (1997) 647–648. doi:10.1016/S0168-583X(97)00111-0.

[43] N. Shen, K. Chou, Thermal modeling of electron beam additive manufacturing process - Powder sintering effects, in: ASME 2012 International Manufacturing Science and Engineering Conference Collocated with the 40th North American Manufacturing Research Conference and in Participation with the Int. Conf., MSEC 2012, 2012: pp. 287–295. doi:10.1115/MSEC2012-7253.

[44] J.H. Cho, S.J. Na, Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole, Journal of Physics D: Applied Physics. 39 (2006) 5372–5378. doi:10.1088/0022-3727/39/24/039.

[45] H.E. Cline, T.R. Anthony, Heat treating and melting material with a scanning laser or electron beam, Journal of Applied Physics. 48 (1977) 3895–3900. doi:10.1063/1.324261.

[46] P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, A.J. Moore, Fluid and particle dynamics in laser powder bed fusion, Acta Materialia. 142 (2018) 107–120. doi:10.1016/j.actamat.2017.09.051.

[47] D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang, Y. Liu, C. Song, Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties, Materials and Design. 117 (2017) 121–130. doi:10.1016/j.matdes.2016.12.060.

[48] S.A. Khairallah, A.A. Martin, J.R.I. Lee, G. Guss, N.P. Calta, J.A. Hammons, M.H. Nielsen, K. Chaput, E. Schwalbach, M.N. Shah, M.G. Chapman, T.M. Willey, A.M. Rubenchik, A.T. Anderson, Y.M. Wang, M.J. Matthews, W.E. King, Controlling interdependent meso- nanosecond dynamics and defect generation in metal 3D printing, Science. 368 (2020) 660– 665. doi:10.1126/science.aay7830.

[49] X. Chen, H. Tian, Z. Yan, X. Zhi, J. Zhang, Z. Yuan, Investigation on mechanism of surface tension on morphology of melt track in selective laser melting processing, Applied Physics A: Materials Science and Processing. 124 (2018) 1–7. doi:10.1007/s00339-018-2102-7.

[50] M.F. Zäh, S. Lutzmann, Modelling and simulation of electron beam melting, Production Engineering. 4 (2010) 15–23. doi:10.1007/s11740-009-0197-6.

[51] C.D. Boley, S.A. Khairallah, A.M. Rubenchik, Calculation of laser absorption by metal powders in additive manufacturing, Applied Optics. 54 (2015) 2477. doi:10.1364/ao.54.002477.

[52] C.L.A. Leung, R. Tosi, E. Muzangaza, S. Nonni, P.J. Withers, P.D. Lee, Effect of preheating on the thermal, microstructural and mechanical properties of selective electron beam melted Ti-6Al-4V components, Materials and Design. 174 (2019). doi:10.1016/j.matdes.2019.107792.

[53] A.M. Kiss, A.Y. Fong, N.P. Calta, V. Thampy, A.A. Martin, P.J. Depond, J. Wang, M.J. Matthews, R.T. Ott, C.J. Tassone, K.H. Stone, M.J. Kramer, A. van Buuren, M.F. Toney, J. Nelson Weker, Laser-Induced Keyhole Defect Dynamics during Metal Additive Manufacturing, Advanced Engineering Materials. 21 (2019) 1900455. doi:10.1002/adem.201900455.

[54] H. Bian, K. Aoyagi, Y. Zhao, C. Maeda, T. Mouri, A. Chiba, Microstructure refinement for superior ductility of Al–Si alloy by electron beam melting, Additive Manufacturing. 32 (2020) 100982. doi:10.1016/j.addma.2019.100982.

[55] K.Q. Le, C. Tang, C.H. Wong, On the study of keyhole-mode melting in selective laser melting process, International Journal of Thermal Sciences. 145 (2019) 105992. doi:10.1016/j.ijthermalsci.2019.105992.

[56] Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka, A. Chiba, Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy, Additive Manufacturing. 26 (2019) 202–214. doi:10.1016/j.addma.2018.12.002.

[57] A. Raghavan, H.L. Wei, T.A. Palmer, T. DebRoy, Heat transfer and fluid flow in additive manufacturing, Journal of Laser Applications. 25 (2013) 052006. doi:10.2351/1.4817788.

[58] P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, A.J. Moore, Laser powder bed fusion at sub-atmospheric pressures, International Journal of Machine Tools and Manufacture. 130–131 (2018) 65–72. doi:10.1016/j.ijmachtools.2018.03.007.

[59] N.P. Calta, A.A. Martin, J.A. Hammons, M.H. Nielsen, T.T. Roehling, K. Fezzaa, M.J. Matthews, J.R. Jeffries, T.M. Willey, J.R.I. Lee, Pressure dependence of the laser-metal interaction under laser powder bed fusion conditions probed by in situ X-ray imaging, Additive Manufacturing. 32 (2020). doi:10.1016/j.addma.2020.101084.

[60] B. Zhou, J. Zhou, H. Li, F. Lin, A study of the microstructures and mechanical properties of Ti6Al4V fabricated by SLM under vacuum, Materials Science and Engineering A. 724 (2018) 1–10. doi:10.1016/j.msea.2018.03.021.

[61] A. V. Gusarov, T. Laoui, L. Froyen, V.I. Titov, Contact thermal conductivity of a powder bed in selective laser sintering, International Journal of Heat and Mass Transfer. 46 (2003) 1103– 1109. doi:10.1016/S0017-9310(02)00370-8.

[62] R. Mertens, S. Dadbakhsh, J. Van Humbeeck, J.P. Kruth, Application of base plate preheating during selective laser melting, in: Procedia CIRP, Elsevier B.V., 2018: pp. 5–11. doi:10.1016/j.procir.2018.08.002.

[63] A. Iveković, M.L. Montero-Sistiaga, K. Vanmeensel, J.P. Kruth, J. Vleugels, Effect of processing parameters on microstructure and properties of tungsten heavy alloys fabricated by SLM, International Journal of Refractory Metals and Hard Materials. 82 (2019) 23–30. doi:10.1016/j.ijrmhm.2019.03.020.

[64] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, I. Smurov, Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder, Journal of Materials Processing Technology. 213 (2013) 606–613. doi:10.1016/j.jmatprotec.2012.11.014.

[65] M. Malỳ, C. Höller, M. Skalon, B. Meier, D. Koutnỳ, R. Pichler, C. Sommitsch, D. Paloušek, Effect of process parameters and high-temperature preheating on residual stress and relative density of Ti6Al4V processed by selective laser melting, Materials. 16 (2019). doi:10.3390/ma12060930.

[66] CarTech, CarTech® BioDur® CCM® Alloy, (n.d.). http://cartech.ides.com/datasheet.aspx?i=101&E=8 (accessed June 2, 2020).

[67] J.J. Valencia, Thermophysical Properties Sources and Availability of Reliable Data, (2008). doi:10.1361/asmhba0005240.

[68] J.H. Cho, D.F. Farson, J.O. Milewski, K.J. Hollis, Weld pool flows during initial stages of keyhole formation in laser welding, Journal of Physics D: Applied Physics. 42 (2009) 175502. doi:10.1088/0022-3727/42/17/175502.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る