リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ヒト鼻腔粘膜上皮初代培養細胞へのライノウイルス感染における葛根湯のサイトカイン産生抑制効果に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ヒト鼻腔粘膜上皮初代培養細胞へのライノウイルス感染における葛根湯のサイトカイン産生抑制効果に関する研究

齊藤 奈津美 東北大学

2022.03.25

概要

背景
ライノウイルス(RV; rhinovirus)は,風邪の主な原因ウイルスであり,慢性呼吸器疾患である気管支喘息や慢性閉塞性肺疾患の急性増悪の原因になることがある。漢方薬の一つである葛根湯(かっこんとう)は,風邪や肩こり,身体上部の炎症疾患などの治療に用いられる。これまでの研究では,葛根湯はインフルエンザウイルスやヒト呼吸器合胞体ウイルス(human respiratory syncytial virus)に対して抗ウイルス作用や抗炎症作用を示すことが報告されている。しかし,葛根湯の RV 感染症に対する作用はこれまで検討されてこなかった。そこで本研究は,ヒト鼻腔粘膜上皮(HNE; human nasal epithelial)細胞への RV 感染における葛根湯の作用を調べることを目的とした。

方法
内視鏡下鼻腔・副鼻腔手術によって得られた鼻ポリープから HNE 細胞を単離・培養し,14 型ライノウイルス(RV14)を感染させ,葛根湯抽出液添加の有無で比較した。培養した細胞の上清を回収し,RV14 の力価(=放出量)とサイトカイン濃度を評価した。また,定量的逆転写ポリメラーゼ連鎖反応で RV14 の RNA 量を,酵素結合免疫吸着法で核内の NF-κB(nuclear factor-kappa B; 核内因子カッパ B)サブユニットレベルを各々評価した。

結果
葛根湯抽出液の添加により,RV14 の力価および細胞内の RV14 の RNA 複製量は減少せず,RV14 の増殖は阻害されなかった。一方,IL(interleukin;インターロイキン)-8,TNF(tumor necrosis factor;腫瘍壊死因子)-α,MCP(monocyte chemotactic protein;単球走化性タンパク質)-1 などの特定の炎症性サイトカインの産生は減少した。葛根湯抽出液を添加した際とは異なり,葛根湯を構成するそれぞれの生薬は単独では IL-8 レベルを低下させる傾向はあったが,有意差を認めなかった。また,葛根湯抽出液の添加により NF-κB の p50 サブユニットは有意に減少した。

考察
葛根湯抽出液添加により RV 増殖抑制効果は認めなかったが一部の炎症性サイトカイン産生を抑制する結果が得られた。葛根湯のサイトカイン産生抑制効果は各構成生薬が総合的に作用する可能性があり,また NF-κB の p50 サブユニットが関与する可能性があるが,より詳細な作用機序の解明が必要である。

結論
葛根湯は RV14 感染による炎症を抑制し,HNE 細胞に対して免疫調整作用を発揮する可能性が示唆された。本研究は HNE 細胞の初代培養細胞において,RV 感染に対する葛根湯抽出液の効果を明らかにした初めての研究であり,葛根湯が RV 感染とそれに続く気道炎症に対する有効な治療法として作用する可能性を示すもの である。

この論文で使われている画像

参考文献

1) Heikkinen T, Järvinen A: The common cold. Lancet 2003;361:51-59. doi: 10.1016/S0140-6736(03)12162-9.

2) Ambrosioni J, Bridevaux PO, Wagner G, et al: Epidemiology of viral respiratory infections in a tertiary care centre in the era of molecular diagnosis, Geneva, Switzerland, 2011-2012. Clin Microbiol Infect 2014;20:O578-O584. doi: 10.1111/1469-0691.12525.

3) Basnet S, Palmenberg AC, Gern JE: Rhinoviruses and their receptors. Chest 2019;155:1018-1025. doi: 10.1016/j.chest.2018.12.012.

4) Esneau C, Bartlett N, Bochkov YA: Rhinovirus structure, replication and classification. In Rhinovirus Infections Rethinking the Impact on Human Health and Disease. 1st ed, by Bartlett N, Wark P, Knight D. Academic press, Cambridge, MA, United States, 2019; 6-10.

5) Greve JM, Davis G, Meyer AM, et al: The major human rhinovirus receptor is ICAM-1. Cell 1989;56:839-847.

6) Bochkov YA, Gern JM: Clinical and molecular features of human rhinovirus. Microbes Infect 2012;14:485-494. doi: 10.1016/j.micinf.2011.12.011.

7) McIntyre CL, Knowles NJ, Simmonds P: Proposals for the classification of human rhinovirus species A, B and C into genotypically assigned types. J Gen Virol 2013;94:1791-1806. doi: 10.1099/vir.0.053686-0.

8) Perez L, Carrasco L: Entry of poliovirus into cells does not require a low- pH step. J Virol 1993;67:4543-4548. doi: 10.1128/JVI.67.8.4543-4548.1993.

9) Casasnovas JM, Springer TA: Pathway of rhinovirus disruption by soluble intercellular adhesion molecule 1 (ICAM-1): an intermediate in which ICAM-1 is bound and RNA is released. J Virol 1994;68:5882-5889. doi: 10.1128/JVI.68.9.5882-5889.1994.

10) Fuchs R, Blaas D: Uncoating of human rhinoviruses. Rev Med Virol 2010;20:281-297. doi.org/10.1002/rmv.654.

11) Harris 2nd JM, Gwaltney Jr. JM: Incubation periods of experimental rhinovirus infection and illness. Clin Infect Dis 1996;23:1287-1290.

12) Stobart CC, Nosek JM, Moore ML: Rhinovirus Biology, Antigenic Diversity, and Advancements in the Design of a Human Rhinovirus Vaccine. Front Microbiol 2017;8:2412.

13) Natasha G, Lydia F, Sebastian LJ, Patrick M: Experimental rhinovirus infection in COPD: implications for antiviral therapies. Antiviral Res. 2014;102; 95-105

14) Shinozuka N, Tatsumi K, Nakamura A, et al: The traditional herbal medicine Hochuekkito improves systemic inflammation in patients with chronic obstructive pulmonary disease. J Am Geriatr Soc 2007;55:313-314. doi: 10.1111/j.1532-5415.2007.01057.x.

15) Tatsumi K, Shinozuka N, Nakayama K, et al: Hochuekkito improves systemic inflammation and nutritional status in elderly patients with chronic obstructive pulmonary disease. J Am Geriatr Soc 2009;57:169-170. doi: 10.1111/j.1532-5415.2009.02034.x.

16) Yamaya M, Sasaki T, Yasuda H, et al: Hochu-ekki-to inhibits rhinovirus infection in human tracheal epithelial cells. Br J Pharmacol 2007;150:702-710. doi: 10.1038/sj.bjp.0707135.

17) Takayama S, Kikuchi A, Makino T, et al: Basic pharmacological mechanisms and clinical evidence of the efficacy of Hochuekkito against infectious diseases and its potential for use against COVID‐19. Traditional & Kampo Medicine 2021;8:3-21. doi: 10.1002/tkm2.1264.

18) Department of Pharmacognosy, Phytochemistry and Narcotics (DPPN), National Institute of Health Sciences (NIHS) of Japan and National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN). STORK. (http://mpdb.nibiohn.go.jp/stork/) providing package inserts of kakkonto: https://www.tsumura.co.jp/english/products/pi/JPR_T001.pdf [Accessed Feb. 1, 2021].

19) Arita R, Ono R, Saito N, et al: Kakkonto, shosaikoto, Platycodon grandiflorum root, and gypsum (a Japanese original combination drug known as saikatsugekito): Pharmacological review of its activity against viral infections and respiratory inflammatory conditions and a discussion of its applications to COVID‐19. Traditional & Kampo Medicine 2020;7:115-127. doi: 10.1002/tkm2.1258.

20) Kurokawa M, Tsurita M, Brown J, et al: Effect of interleukin-12 level augmented by Kakkon-to, a herbal medicine, on the early stage of influenza infection in mice. Antiviral Res 2002;56:183-188. doi: 10.1016/s0166-3542(02)00104-3.

21) Wu MS, Yen HR, Chang CW, et al: Mechanism of action of the suppression of influenza virus replication by Ko-Ken Tang through inhibition of the phosphatidylinositol 3-kinase/Akt signaling pathway and viral RNP nuclear export. J Ethnopharmacol 2011;134:614-623. doi:10.1016/j.jep.2011.01.005.

22) Shirayama R, Shoji M, Sriwilaijaroen N, et al: Inhibition of PA endonuclease activity of influenza virus RNA polymerase by Kampo medicines. Drug Discov Ther 2016;10:109-113. doi:10.5582/ddt.2016.01010.

23) Geng ZK, Li YQ, Cui QH, et al: Exploration of the mechanisms of Ge Gen Decoction against influenza A virus infection. Chin J Nat Med 2019;17:650-662. doi: 10.1016/S1875-5364(19)30079-2.

24) Chang JS, Wang KC, Shieh DE et al: Ge-Gen-Tang has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol 2012;139:305-310. doi: 10.1016/j.jep.2011.11.018.

25) Subauste MC, Jacoby DB, Richards SM, et al: Infection of a human respiratory epithelial cell line with rhinovirus. Induction of cytokine release and modulation of susceptibility to infection by cytokine exposure. J Clin Invest 1995;96:549-557. doi: 10.1172/JCI118067.

26) Zhu Z, Tang W, Ray A, et al: Rhinovirus stimulation of lnterleukin-6 in vivo and in vitro: evidence for nuclear factor κB-dependent transcriptional activation. J Clin Invest 1996;97:421-430. doi: 10.1172/JCI118431.

27) Terajima M, Yamaya M, Sekizawa K, et al: Rhinovirus infection of primary cultures of human tracheal epithelium: role of ICAM-1 and IL- 1β. Am J Physiol 1997;273:L749-L759. doi: 10.1152/ajplung.1997.273.4.L749.

28) Meguro H, Bryant JD, Torrence AE, et al: Canine kidney cell line for isolation of respiratory viruses. J Clin Microbiol 1979;9:175-179. doi: 10.1128/jcm.9.2.175-179.1979.

29) Numazaki Y, Oshima T, Ohmi A, et al: A microplate method for isolation of viruses from infants and children with acute respiratory infections. Microbiol Immunol 1987;31:1085-1095. doi: 10.1111/j.1348-0421.1987.tb01340.x.

30) Suzuki T, Yamaya M, Sekizawa K et al: Bafilomycin A1 inhibits rhinovirus infection in human airway epithelium: effects on endosome and ICAM-1. Am J Physiol Lung Cell Mol Physiol 2001;280:L1115-L1127. doi: 10.1152/ajprenal.2001.280.6.F1115.

31) Lusamba Kalonji N, Nomura K, Kawase T, et al: The non-antibiotic macrolide EM900 inhibits rhinovirus infection and cytokine production in human airway epithelial cells. Physiol Rep 2015;3:e12557. doi: 10.14814/phy2.12557.

32) Yamaya M, Nishimura H, Hatachi Y, et al: Procaterol inhibits rhinovirus infection in primary cultures of human tracheal epithelial cells. Eur J Pharmacol 2011;650:431-444. doi: 10.1016/j.ejphar.2010.09.056.

33) Yamaya M, Nomura K, Arakawa K, et al: Increased rhinovirus replication in nasal mucosa cells in allergic subjects is associated with increased ICAM-1 levels and endosomal acidification and is inhibited by L-carbocisteine. Immun Inflamm Dis 2016;4:166-181. doi: 10.1002/iid3.102.

34) The Ministry of Health, Labor, and Welfare: The Japanese Pharmacopoeia seventeenth edition 2016:1889-1892. Available from: https://www.mhlw.go.jp/file/06-Seisakujouhou-11120000-Iyakushokuhinkyoku/JP17_REV.pdf [Accessed Feb. 1, 2021]

35) Yamaya M, Nishimura H, Nadine L, et al: Formoterol and budesonide inhibit rhinovirus infection and cytokine production in primary cultures of human tracheal epithelial cells. Respir Investig 2014;52:251-260. doi: 10.1016/j.resinv.2014.03.004.

36) Gu F, Aniento F, Parton RG, et al: Functional dissection of COP-I subunits in the biogenesis of multivesicular endosomes. J Cell Biol 1997;139:1183-1195. doi: 10.1083/jcb.139.5.1183.

37) Yafune A, Cyong JC: Population pharmacokinetic analysis of ephedrine in Kampo prescriptions: a study in healthy volunteers and clinical use of the pharmacokinetic results. Int. J Clin Pharmacol Res 2001;21:95-102.

38) Inotsume N, Fukushima S, Hayakawa T, et al: Pharmacokinetics of ephedrine and pseudoephedrine after oral administration of kakkonto to healthy male volunteers. Jpn J Clin Pharmacol Ther 2009;40:79-83. doi: org/10.3999/jscpt.40.79.

39) Marshansky V, Vinay P: 1996. Proton gradient formation in early endosomes from proximal tubules. Biochim. Biophys. Acta 1996;1284:171-180. doi: 10.1016/s0005-2736(96)00123-x.

40) Message SD, Johnston SL: Host defense function of the airway epithelium in health and disease: clinical background. J Leukoc Biol 2004;75:5-17. doi: 10.1189/jlb.0703315.

41) Jacobs SE, Lamson DM, St. George K, et al: Human rhinoviruses. Clin Microbiol Rev 2013;26:135-162. doi: 10.1128/CMR.00077-12.

42) Schuler BA, Schreiber MT, Li L, et al: Major and minor group rhinoviruses elicit differential signaling and cytokine responses as a function of receptor-mediated signal transduction. PLoS One 2014;9:e93897. doi: 10.1371/journal.pone.0093897.

43) Baggiolini M, Clark-Lewis I: Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 1992;27:97-101. doi: 10.1016/0014-5793(92)80909-z.

44) Harada A, Sekido N, Akahoshi T, et al: Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol. 1994;56:559- 64.

45) Shannon J, Ernst P, Yamauchi Y, et al: Differences in airway cytokine profile in severe asthma compared to moderate asthma. Chest 2008;133:420-426. doi: 10.1378/chest.07-1881.

46) Dong T, Santos S, Yang Z, et al: Sputum and salivary protein biomarkers and point-of-care biosensors for the management of COPD. Analyst 2020;145:1583-1604. doi: 10.1039/c9an01704f.

47) Marc-Malovrh M, Camlek L, Škrgat S, et al: Elevated eosinophils, IL5 and IL8 in induced sputum in asthma patients with accelerated FEV1 decline. Respir Med 2020;162:105875. doi: 10.1016/j.rmed.2020.105875.

48) Kikuchi I, Kikuchi S, Kobayashi T, et al: Eosinophil trans-basement membrane migration induced by interleukin-8 and neutrophils. Am J Respir Cell Mol Biol 2006;34:760-765. doi: 10.1165/rcmb.2005-0303OC.

49) Nakagome K, Nagata M: Involvement and possible role of eosinophils in asthma exacerbation. Front Immunol 2018;9:2220. doi: 10.3389/fimmu.2018.02220.

50) Hoover-Litty H, Greve JM. Formation of rhinovirus-soluble ICAM-1 complexes and conformational changes in the virion. J Virol 1993;67:390-397. doi: 10.1128/JVI.67.1.390-397.1993.

51) Suzuki T, Yamaya M, Sekizawa K, et al: Erythromycin inhibits rhinovirus infection in cultured human tracheal epithelial cells. Am J Respir Crit Care Med 2002;165:1113-1118. doi: 10.1164/ajrccm.165.8.2103094.

52) Stanway G, Hughes PJ, Mountford RC, et al: The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleotic Acids Res 1984;12:7859-7975. doi: 10.1093/nar/12.20.7859.

53) Zhu Z, Tang W, Gwaltney JM Jr, et al: Rhinovirus stimulation of interleukin-8 in vivo and in vitro: role of NF-B. Am J Physiol 1997;273:L814-L824. doi: 10.1152/ajplung.1997.273.4.L814.

54) Makris S, Johnston S: Recent advances in understanding rhinovirus immunity. F1000Res 2018;7:F1000 Faculty Rev-1537. doi: 10.12688/f1000research.15337.1.

55) Ganjian H, Rajput C, Elzoheiry M, et al: Rhinovirus and innate immune function of airway epithelium. Front Cell Infect Microbiol 2020;10:277. doi: 10.3389/fcimb.2020.00277.

56) Das T, Mukherjee S, Chaudhuri K: Effect of quercetin on Vibrio cholerae induced nuclear factor-B activation and interleukin-8 expression in intestinal epithelial cells. Microbes Infect 2012;14:690-695. doi: 10.1016/j.micinf.2012.02.007.

57) Hewson CA, Haas JJ, Bartlett NW, et al: Rhinovirus induces MUC5AC in a human infection model and in vitro via NF-κB and EGFR pathways. Eur Respir J 2010;36:1425-1435. doi: 10.1183/09031936.00026910.

58) Yamaya M, Nishimura H, Hatachi Y, et al: Levofloxacin inhibits rhinovirus infection in primary cultures of human tracheal epithelial cells. Antimicrob Agents Chemother 2012;56:4052-4061. doi: 10.1128/AAC.00259-12.

59) Suzuki T, Yamaya M, Kamanaka M, et al: Type 2 rhinovirus infection of cultured human tracheal epithelial cells: role of LDL receptor. Am J Physiol 2001;208:L409-L420. doi: 10.1152/ajplung.2001.280.3.L409.

60) Chang JS, Wang KC, Yeh CF, et al: Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol 2013;145:146-151. doi: 10.1016/j.jep.2012.10.043.

61) Lin TJ, Wang KC, Lin CC, et al: Anti-viral activity of water extract of Paeonia lactiflora pallas against human respiratory syncytial virus in human respiratory tract cell lines. Am J Chin Med 2013;41:585-599. doi: 10.1142/S0192415X13500419.

62) Nomura T, Fukushi M, Oda K, et al: Effects of traditional Kampo drugs and their constituent crude drugs on influenza virus replication in vitro: suppression of viral protein synthesis by Glycyrrhizae Radix. Evid Based Complement Alternat Med 2019;2019:3230906. doi: 10.1155/2019/3230906.

63) Kumar S, Kumari R, Mishra S: Pharmacological properties and their medicinal uses of Cinnamomum: a review. J Pharm Pharmacol 2019;71: 1735-1761. doi: 10.1111/jphp.13173.

64) Fiore C, Eisenhut M, Krausse R, et al: Antiviral effects of Glycyrrhiza species. Phytother Res 2008;22:141-148. doi: 10.1002/ptr.2295.

65) Sun ZG, Zhao TT, Lu N, et al: Research progress of glycyrrhizic acid on antiviral activity. Mini Rev Med Chem 2019;19:826-832. doi: 10.2174/1389557519666190119111125.

66) Wei SY, Chen Y, Xu XY: Progress on the pharmacological research of puerarin: a review. Chin J Nat Med 2014;12:407-414. doi: 10.1016/S1875-5364(14)60064-9.

67) Nakamura T, Fujii T, Ichikawa A. Enzyme leakage due to change of membrane permeability of primary cultured rat hepatocytes treated with various hepatotoxins and its prevention by glycyrrhizin. Cell Biol Toxicol 1985;1:285-295. doi: 10.1007/BF00118193.

68) Shiki Y, Ishikawa Y, Shirai K, et al: Effect of glycyrrhizin on lysosomes labilization by phospholipase A2. Am J Chin Med. 1986;14:131-137. doi: 10.1142/S0192415X86000211.

69) Umukoro S, Alabi AO, Eduviere AT, et al: Anti-inflammatory and membrane stabilizing properties of methyl jasmonate in rats. Chin J Nat Med 2017;15:202-209. doi: 10.1016/S1875-5364(17)30036-5.

70) Matsui S, Matsumoto H, Sonoda Y, et al: Glycyrrhizin and related compounds down-regulate production of inflammatory chemokines IL-8 and eotaxin 1 in a human lung fibroblast cell line. Int Immunopharmacol 2004;4:1633-1644. doi: 10.1016/j.intimp.2004.07.023.

71) Korompilias AV, Chen LE, Seeber AV, et al: Actions of glucocorticosteroids on ischemic-reperfused muscle and cutaneous tissue. Microsurgery 1996;17:495-502. doi: 10.1002/(SICI)1098-2752(1996)17:9<495::AID-MICR4>3.0.CO;2-C.

72) Lauder SN, Jones E, Smart K, et al: Interleukin-6 limits influenza- induced inflammation and protects against fatal lung pathology. Eur J Immunol 2013;43:2613-2625. doi: 10.1002/eji.201243018.

73) Wang X, Yan J, Xu X, et al: Puerarin prevents LPS-induced acute lung injury via inhibiting inflammatory response. Microb Pathog 2018;118:170-176. doi: 10.1016/j.micpath.2018.03.033.

74) Takei H, Baba Y, Hisatsune A, et al: Glycyrrhizin inhibits interleukin-8 production and nuclear factor-kappaB activity in lung epithelial cells, but not through glucocorticoid receptors. J Pharmacol Sci 2008;106:460-468. doi: 10.1254/jphs.fp0072378.

75) Kitamura H, Urano H, Ara T: Preventive effects of a Kampo medicine, kakkonto, on inflammatory responses via the suppression of extracellular signal-regulated kinase phosphorylation in lipopolysaccharide-treated human gingival fibroblasts. ISRN Pharmacol 2014;2014:784019. doi: 10.1155/2014/784019.

76) Zhou B, Yang Z, Feng Q, et al: Aurantiamide acetate from baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-κB signaling pathway in Influenza A virus-infected cells. J Ethnopharmacol 2017;199:60-67. doi: 10.1016/j.jep.2017.01.038.

77) Ma QH, Ren MY, Luo JB: San Wu Huangqin decoction regulates inflammation and immune dysfunction induced by influenza virus by regulating the NF-κB signaling pathway in H1N1-infected mice. J Ethnopharmacol 2021;264:112800. doi: 10.1016/j.jep.2020.112800.

78) Bianco A, Whiteman SC, Sethi SK, et al: Expression of intercellular adhesion molecule-1 (ICAM-1) in nasal epithelial cells of atopic subjects: a mechanism for increased rhinovirus infection? Clin Exp Immunol 2000;121:339-345. doi: 10.1046/j.1365-2249.2000.01301.x.

79) Lopez-Souza N, Favoreto S, Wong H, et al: In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J Allergy Clin Immunol 2009;123:1384-1390. doi: 10.1016/j.jaci.2009.03.010.

80) Dimova S, Mugabowindekwe R, Willems T, et al: Safety-assessment of 3-mehoxyquercetin as an antirhinoviral compound for nasal application: effect on ciliary beat frequency. Int J Pharm 2003;263:95-103. doi: 10.1016/s0378-5173(03)00363-6.

81) Potaczek DP, Unger SD, Zhang N, et al: Development and characterization of DNAzyme candidates demonstrating significant efficacy against human rhinoviruses. J Allergy Clin Immunol 2019;143:1403-1415. doi: 10.1016/j.jaci.2018.07.026.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る