リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Establishment of quantitative and consistent in vitro skeletal muscle pathological models of myotonic dystrophy type 1 using patient-derived iPSCs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Establishment of quantitative and consistent in vitro skeletal muscle pathological models of myotonic dystrophy type 1 using patient-derived iPSCs

Kawada, Ryu Jonouchi, Tatsuya Kagita, Akihiro Sato, Masae Hotta, Akitsu Sakurai, Hidetoshi 京都大学 DOI:10.1038/s41598-022-26614-z

2023

概要

Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats (CTGexp) in the dystrophia myotonica protein kinase (DMPK) gene, and the transcription products, expanded CUG repeats, sequester muscleblind like splicing regulator 1 (MBNL1), resulting in the nuclear MBNL1 aggregation in the DM1 cells. Loss of MBNL1 function is the pivotal mechanism underlying the pathogenesis of DM1. To develop therapeutics for DM1, proper human in vitro models based on the pathologic mechanism of DM1 are required. In this study, we established robust in vitro skeletal muscle cell models of DM1 with patient-derived induced pluripotent stem cells (iPSCs) using the MyoD1-induced system and iPSCs-derived muscle stem cell (iMuSC) differentiation system. Our newly established DM1 models enable simple quantitative evaluation of nuclear MBNL1 aggregation and the downstream splicing defects. Quantitative analyses using the MyoD1-induced myotubes showed that CTGexp-deleted DM1 skeletal myotubes exhibited a reversal of MBNL1-related pathologies, and antisense oligonucleotide treatment recovered these disease phenotypes in the DM1-iPSCs-derived myotubes. Furthermore, iMuSC-derived myotubes exhibited higher maturity than the MyoD1-induced myotubes, which enabled us to recapitulate the SERCA1 splicing defect in the DM1-iMuSC-derived myotubes. Our quantitative and reproducible in vitro models for DM1 established using human iPSCs are promising for drug discovery against DM1.

この論文で使われている画像

関連論文

参考文献

1. Tomé, S. & Gourdon, G. DM1 phenotype variability and triplet repeat instability: Challenges in the development of new therapies. Int. J. Mol. Sci. 21, 457 (2020).

2. Davis, B. M., Mccurrach, M. E., Taneja, K. L., Singer, R. H. & Housman, D. E. Expansion of a CUG trinucleotide repeat in the 3’ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc. Natl. Acad. Sci. U. S. A. 94, 7388–7393 (1997).

3. López-Martínez, A., Soblechero-Martín, P., De-La-puente-ovejero, L., Nogales-Gadea, G. & Arechavala-Gomeza, V. An overview of alternative splicing defects implicated in myotonic dystrophy Type I. Genes 11, 1109 (2020).

4. Miller, J. W. et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448 (2000).

5. Ballester-Lopez, A. et al. Tree-dimensional imaging in myotonic dystrophy type 1: Linking molecular alterations with disease phenotype. Neurol. Genet. 6, e484 (2020).

6. Kanadia, R. N. et al. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).

7. Larsen, M. et al. Identifcation of variants in MBNL1 in patients with a myotonic dystrophy-like phenotype. Eur. J. Hum. Genet. 24, 1467–1472 (2016).

8. Mankodi, A. et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289, 1769–1772 (2000).

9. Huguet, A. et al. Molecular, physiological, and motor performance defects in DMSXL mice carrying >1,000 CTG repeats from the human DM1 locus. PLOS Genet. 8, e1003043 (2012).

10. Yadava, R. S. et al. Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a nonCUG sequence within the DMPK 3 UTR RNA. Hum. Mol. Genet. 29, 1440–1453 (2020).

11. Matloka, M., Klein, A. F., Rau, F. & Furling, D. Cells of matter-in vitro models for myotonic dystrophy. Front. Neurol 9, 361 (2018).

12. Philips, A. V., Timchenko, L. T. & Cooper, T. A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280, 737–741 (1998).

13. Dansithong, W., Paul, S., Comai, L. & Reddy, S. MBNL1 is the primary determinant of focus formation and aberrant insulin receptor splicing in DM1. J. Biol. Chem. 280, 5773–5780 (2005).

14. Xia, G., Terada, N. & Ashizawa, T. Human iPSC models to study orphan diseases: Muscular dystrophies. Curr. Stem Cell Reports 4, 299 (2018).

15. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fbroblasts by defned factors. Cell 131, 861–872 (2007).

16. Tanaka, A. et al. Efcient and reproducible myogenic diferentiation from human iPS cells: Prospects for modeling Miyoshi myopathy in vitro. PLoS ONE 8, e61540 (2013).

17. Sasaki-Honda, M. et al. A patient-derived iPSC model revealed oxidative stress increases facioscapulohumeral muscular dystrophycausative DUX4. Hum. Mol. Genet. 27, 4024–4035 (2018).

18. Uchimura, T., Asano, T., Nakata, T., Hotta, A. & Sakurai, H. A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs. Cell Reports Med. 2, 100298 (2021).

19. Ueki, J. et al. Myotonic dystrophy type 1 patient-derived iPSCs for the investigation of CTG repeat instability. Sci. Rep. 7, 1–12 (2017).

20. Zhao, M. et al. Induced fetal human muscle stem cells with high therapeutic potential in a mouse muscular dystrophy model. Stem Cell Reports 15, 80–94 (2020).

21. Nalbandian, M. et al. Characterization of hiPSC-derived muscle progenitors reveals distinctive markers for myogenic cell purifcation toward cell therapy. Stem Cell Reports 16, 883–898 (2021).

22. Fujiwara, K. et al. Mature myotubes generated from human-induced pluripotent stem cells without forced gene expression. Front. Cell Dev. Biol. 10, 935 (2022).

23. Klein, A. F., Arandel, L., Marie, J. & Furling, D. fsh protocol for myotonic dystrophy type 1 cells. Methods Mol. Biol. 2056, 203–215 (2020).

24. Maury, Y. et al. Pluripotent stem cell-based drug screening reveals cardiac glycosides as modulators of myotonic dystrophy type 1. iScience 11, 258–271 (2019).

25. Holt, I. et al. Muscleblind-like proteins: Similarities and diferences in normal and myotonic dystrophy muscle. Am. J. Pathol. 174, 216–227 (2009).

26. Fugier, C. et al. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat. Med. 17, 720–725 (2011).

27. Rau, F. et al. Abnormal splicing switch of DMD’s penultimate exon compromises muscle fbre maintenance in myotonic dystrophy. Nat. Commun. 6, 7205 (2015).

28. Grant, S. Ara-C: Cellular and molecular pharmacology. Adv. Cancer Res. 72, 197–233 (1997).

29. Beaudoin, G. M. J. et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat. Protoc. 7(9), 1741–1754 (2012).

30. Mastroyiannopoulos, N. P., Nicolaou, P., Anayasa, M., Uney, J. B. & Phylactou, L. A. Down-regulation of Myogenin can reverse terminal muscle cell diferentiation. PLoS ONE 7, e29896 (2012).

31. van Agtmaal, E. L. et al. CRISPR/Cas9-induced (CTG⋅CAG)n repeat instability in the myotonic dystrophy type 1 locus: implications for therapeutic genome editing. Mol. Ter. 25, 24–43 (2017).

32. Wheeler, T. M. et al. Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 325, 336–339 (2009).

33. Periasamy, M. & Kalyanasundaram, A. SERCA pump isoforms: Teir role in calcium transport and disease. Muscle Nerve 35, 430–442 (2007).

34. Hino, S. I. et al. Molecular mechanisms responsible for aberrant splicing of SERCA1 in myotonic dystrophy type 1. Hum. Mol. Genet. 16, 2834–2843 (2007).

35. Uchimura, T., Otomo, J., Sato, M. & Sakurai, H. A human iPS cell myogenic diferentiation system permitting high-throughput drug screening. Stem Cell Res. 25, 98–106 (2017).

36. Swif, M. R. & Finegold, M. J. Myotonic muscular dystrophy: Abnormalities in fbroblast culture. Science 165, 294–296 (1969).

37. Rzuczek, S. G. et al. Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nat. Chem. Biol. 13, 188–193 (2017).

38. Reddy, K. et al. A CTG repeat-selective chemical screen identifes microtubule inhibitors as selective modulators of toxic CUG RNA levels. Proc. Natl. Acad. Sci. U. S. A. 116, 20991–21000 (2019).

39. Kim, E. Y. et al. Distinct pathological signatures in human cellular models of myotonic dystrophy subtypes. JCI Insight https://doi. org/10.1172/jci.insight.122686 (2019).

40. Mondragon-Gonzalez, R. & Perlingeiro, R. C. R. Recapitulating muscle disease phenotypes with myotonic dystrophy 1 induced pluripotent stem cells: A tool for disease modeling and drug discovery. DMM Dis. Model. Mech. 11, dmm034728 (2018).

41. Wang, Y. et al. Terapeutic genome editing for myotonic dystrophy type 1 using CRISPR/Cas9. Mol. Ter. 26, 2617–2630 (2018).

42. Mérien, A. et al. CRISPR gene editing in pluripotent stem cells reveals the function of MBNL proteins during human in vitro myogenesis. Hum. Mol. Genet. 31, 41–56 (2021).

43. Darabi, R. et al. Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10, 610–619 (2012).

44. Wang, E. T. et al. Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Hum. Mol. Genet. 28, 1312–1321 (2019).

45. Kanadia, R. N. et al. Reversal of RNA missplicing and myotonia afer muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc. Natl. Acad. Sci. U. S. A. 103, 11748–11753 (2006).

46. Arandel, L. et al. Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high afnity for expanded CUG repeats. Nat. Biomed. Eng. 6(2), 207–220 (2022).

47. Zhao, Y. et al. Functional analysis of SERCA1b, a highly expressed SERCA1 variant in myotonic dystrophy type 1 muscle. Biochim. Biophys. Acta Mol. Basis Dis. 1852, 2042–2047 (2015).

48. Kimura, T. et al. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum. Mol. Genet. 14, 2189–2200 (2005).

49. Guglielmi, V. et al. SERCA1 protein expression in muscle of patients with Brody disease and Brody syndrome and in cultured human muscle fbers. Mol. Genet. Metab. 110, 162–169 (2013).

50. Dastidar, S. et al. Efcient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells. Nucleic Acids Res. 46, 8275–8298 (2018).

51. Vihola, A. et al. Diferences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2. Acta Neuropathol. 119, 465–479 (2010).

52. Kuyumcu-Martinez, N. M., Wang, G. S. & Cooper, T. A. Increased steady-state levels of CUGBP1 in Myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol. Cell 28, 68–78 (2007).

53. Koshelev, M., Sarma, S., Price, R. E., Wehrens, X. H. T. & Cooper, T. A. Heart-specifc overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Hum. Mol. Genet. 19, 1066–1075 (2010).

54. Misra, C. et al. Aberrant expression of a non-muscle RBFOX2 isoform triggers cardiac conduction defects in myotonic dystrophy. Dev. Cell 52, 748-763.e6 (2020).

55. Orengo, J. P. et al. Expanded CTG repeats within the DMPK 3′ UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy. Proc. Natl. Acad. Sci. U. S. A. 105, 2646–2651 (2008).

56. Spitalieri, P. et al. Modelling the pathogenesis of Myotonic Dystrophy type 1 cardiac phenotype through human iPSC-derived cardiomyocytes. J. Mol. Cell. Cardiol. 118, 95–109 (2018).

57. Ait Benichou, S. et al. Antisense oligonucleotides as a potential treatment for brain defcits observed in myotonic dystrophy type 1. Gene Ter. 29, 698. https://doi.org/10.1038/s41434-022-00316-7 (2022).

58. Okita, K. et al. A more efcient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412 (2011).

59. Okita, K. et al. An efcient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31, 458–466 (2013).

60. Nakagawa, M. et al. A novel efcient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. https://doi.org/10.1038/srep03594 (2014).

61. Li, H. L. et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep. 4, 143–154 (2015).

62. Xu, H., Kita, Y., Bang, U., Gee, P. & Hotta, A. Optimized electroporation of CRISPR-Cas9/gRNA ribonucleoprotein complex for selection-free homologous recombination in human pluripotent stem cells. STAR Protoc. 2, 100965 (2021).

63. Kagita, A. et al. Efcient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/ sgRNA Ribonucleoprotein. Stem Cell Rep. 16, 985–996 (2021).

64. Hildyard, J. C. W. & Wells, D. J. Identifcation and validation of quantitative PCR reference genes suitable for normalizing expression in normal and dystrophic cell culture models of myogenesis. PLoS Curr. https://doi.org/10.1371/currents.md.faafdde4bea8df4 aa7d06cd5553119a6 (2014).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る