リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Simple derivation of skeletal muscle from human pluripotent stem cells using temperature‐sensitive Sendai virus vector」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Simple derivation of skeletal muscle from human pluripotent stem cells using temperature‐sensitive Sendai virus vector

Tan, Ghee Wan Kondo, Takayuki Imamura, Keiko Suga, Mika Enami, Takako Nagahashi, Ayako Tsukita, Kayoko Inoue, Ikuyo Kawaguchi, Jitsutaro Shu, Tsugumine Inoue, Haruhisa 京都大学 DOI:10.1111/jcmm.16899

2021.10

概要

Human pluripotent stem cells have the potential to differentiate into various cell types including skeletal muscles (SkM), and they are applied to regenerative medicine or in vitro modelling for intractable diseases. A simple differentiation method is required for SkM cells to accelerate neuromuscular disease studies. Here, we established a simple method to convert human pluripotent stem cells into SkM cells by using temperature-sensitive Sendai virus (SeV) vector encoding myoblast determination protein 1 (SeV-Myod1), a myogenic master transcription factor. SeV-Myod1 treatment converted human embryonic stem cells (ESCs) into SkM cells, which expressed SkM markers including myosin heavy chain (MHC). We then removed the SeV vector by temporal treatment at a high temperature of 38℃, which also accelerated mesodermal differentiation, and found that SkM cells exhibited fibre-like morphology. Finally, after removal of the residual human ESCs by pluripotent stem cell-targeting delivery of cytotoxic compound, we generated SkM cells with 80% MHC positivity and responsiveness to electrical stimulation. This simple method for myogenic differentiation was applicable to human-induced pluripotent stem cells and will be beneficial for investigations of disease mechanisms and drug discovery in the future.

この論文で使われている画像

関連論文

参考文献

1. Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145-­1147.

2. Chal JJ, Pourquié O. Making muscle: skeletal myogenesis in vivo

and in vitro. Development. 2017;144(12):2104-­2122. 10.1242/

dev.151035

3. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected

cDNA converts fibroblasts to myoblasts. Cell. 1987;51:987-­1000.

4. Constantinides PG, Jones PA, Gevers W. Functional striated muscle

cells from non-­myoblast precursors following 5-­azacytidine treatment. Nature. 1977;267:364-­366.

5. Tanaka A, Woltjen K, Miyake K, et al. Efficient and reproducible

myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro. PLoS One. 2013;8:e61540.

6. Yasuno T, Osafune K, Sakurai H, et al. Functional analysis of iPSC-­

derived myocytes from a patient with carnitine palmitoyltransferase II deficiency. Biochem Biophys Res Commun. 2014;448:175-­181.

7. Shoji E, Sakurai H, Nishino T, et al. Early pathogenesis of Duchenne

muscular dystrophy modelled in patient-­derived human induced

pluripotent stem cells. Sci Rep. 2015;5:12831.

8. Gu C, Yang Y, Sompallae R, et al. A single CRISPR-­C as9 deletion

strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-­

derived muscle cells. Cell Stem Cell.

2016;18:533-­540.

9. Bitzer M, Armeanu S, Lauer UM, Neubert WJ. Sendai virus vectors

as an emerging negative-­strand RNA viral vector system. J Gene

Med. 2003;5:543-­553.

10. Nishimura K, Sano M, Ohtaka M, et al. Development of defective and persistent Sendai virus vector: a unique gene delivery/

expression system ideal for cell reprogramming. J Biol Chem.

2011;286:4760-­4771.

11. Ban H, Nishishita N, Fusaki N, et al. Efficient generation of

transgene-­free human induced pluripotent stem cells (iPSCs) by

temperature-­sensitive Sendai virus vectors. Proc Natl Acad Sci U. S.

A. 2011;108:14234-­14239.

12. Goto K, Imamura K, Komatsu K, et al. Simple derivation of spinal

motor neurons from ESCs/iPSCs using sendai virus vectors. Mol

Ther Methods Clin Dev. 2017;4:115-­125.

13. Li H-­O, Zhu Y-­F, Asakawa M, et al. A Cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol. 2000;74(14):6564-­6569.

14. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient

induction of transgene-­free human pluripotent stem cells using

a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Japan Acad Ser B Phys Biol Sci.

2009;85(8):348-­362. 10.2183/pjab.85.348

15. Kondo T, Imamura K, Funayama M, et al. iPSC-­based compound

screening and in vitro trials identify a synergistic anti-­amyloid β

combination for Alzheimer’s disease. Cell Rep. 2017;21:2304-­2312.

16. Maffioletti SM, Gerli MFM, Ragazzi M, et al. Efficient derivation

and inducible differentiation of expandable skeletal myogenic

cells from human ES and patient-­

specific iPS cells. Nat Protoc.

2015;10:941-­958.

17. Akiyama T, Sato S, Chikazawa-­Nohtomi N, et al. Efficient differentiation of human pluripotent stem cells into skeletal muscle cells by

18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. TAN et al.

combining RNA-­based MYOD1-­expression and POU5F1-­silencing.

Sci Rep. 2018;8:1189.

Weldon JE, Pastan I. A guide to taming a toxin–­Recombinant

immunotoxins constructed from Pseudomonas exotoxin A for

the treatment of cancer. FEBS J. 2011;278(23):4683-­4700.

10.1111/j.1742-­4658.2011.08182.x

Tateno H, Onuma Y, Ito Y, et al. Elimination of tumorigenic human

pluripotent stem cells by a recombinant lectin-­toxin fusion protein.

Stem Cell Rep. 2015;4(5):811-­820. 10.1016/j.stemcr.2015.02.016.

Tateno H, Saito S, Saito S. Engineering of a potent recombinant

lectin-­toxin fusion protein to eliminate human pluripotent stem

cells. Molecules. 2017;22(7):1151.

Juhas M, Engelmayr GC, Fontanella AN, Palmer GM, Bursac N.

Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc Natl Acad Sci U S A.

2014;111(15):5508-­5513. 10.1073/pnas.14027​23111

Madden L, Juhas M, Kraus WE, Truskey GA, Bursac N. Bioengineered

human myobundles mimic clinical responses of skeletal muscle to

drugs. Elife. 2015;4:e04885.

Kokubu Y, Nagino T, Sasa K, et al. Phenotypic drug screening for

dysferlinopathy using patient-­

derived induced pluripotent stem

cells. Stem Cells Transl Med. 2019;8:1017-­1029.

Fujie Y, Fusaki N, Katayama T, et al. New type of Sendai virus vector

provides transgene-­free iPS cells derived from chimpanzee blood.

PLoS One. 2014;9:e113052.

Sugiyama Y, Suzuki A, Kishikawa M, et al. Muscle develops a specific form of small heat shock protein complex composed of MKBP/

HSPB2 and HSPB3 during myogenic differentiation. J Biol Chem.

2000;275:1095-­1104.

Clerico EM, Tilitsky JM, Meng W, Gierasch LM. How Hsp70 molecular machines interact with their substrates to mediate diverse physiological functions HHS public access. J Mol Biol.

2015;427:1575-­1588.

Forcales SV, Puri PL. Signaling to the chromatin during skeletal

myogenesis: novel targets for pharmacological modulation of gene

expression. Semin Cell Dev Biol. 2005;16:596-­611.

McArdle A, Broome CS, Kayani AC, et al. HSF expression in skeletal

muscle during myogenesis: implications for failed regeneration in

old mice. Exp Gerontol. 2006;41:497-­500.

Barone R, Macaluso F, Sangiorgi C, et al. Skeletal muscle Heat shock

protein 60 increases after endurance training and induces peroxisome proliferator-­activated receptor gamma coactivator 1 α1 expression. Nat. Publ. Gr. 2015;6(1):19781. 10.1038/srep1​9781

S U P P O R T I N G I N FO R M AT I O N

Additional supporting information may be found online in the

Supporting Information section.

How to cite this article: Tan GW, Kondo T, Imamura K, et al.

Simple derivation of skeletal muscle from human pluripotent

stem cells using temperature-­sensitive Sendai virus vector. J

Cell Mol Med. 2021;25:9586–­9596. https://doi.org/10.1111/

jcmm.16899

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る